
Introduction

Parameter
Learning
Missing data

Discretization

Structure
Learning
Trees

Polytrees

Search and Score
Techniques

Local methods

Combining Expert
Knowledge and Data

Applications

References

Probabilistic Graphical Models:
Principles and Applications

Chapter 8: BAYESIAN NETWORKS: LEARNING

L. Enrique Sucar, INAOE

(L E Sucar: PGM) 1 / 55



Introduction

Parameter
Learning
Missing data

Discretization

Structure
Learning
Trees

Polytrees

Search and Score
Techniques

Local methods

Combining Expert
Knowledge and Data

Applications

References

Outline

1 Introduction

2 Parameter Learning
Missing data
Discretization

3 Structure Learning
Trees
Polytrees
Search and Score Techniques
Local methods
Combining Expert Knowledge and Data

4 Applications

5 References

(L E Sucar: PGM) 2 / 55



Introduction

Parameter
Learning
Missing data

Discretization

Structure
Learning
Trees

Polytrees

Search and Score
Techniques

Local methods

Combining Expert
Knowledge and Data

Applications

References

Introduction

Introduction

• Learning a Bayesian network includes two aspects:
• Structure Learning. There are two main types of

methods: (i) global methods based on search and
score, and (ii) local methods that use conditional
independence tests

• Parameter Learning. When the structure is known,
parameter learning consists in estimating the conditional
probability tables (CPTs) from data.
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Parameter Learning

Parameter Learning

• If we have sufficient and complete data for all the
variables, and we assume the topology of the BN is
known, parameter learning is straight forward

• The CPT for each variable can be estimated from the
data based on the frequency of each value obtaining a
maximum likelihood (ML) estimator

• For example, to estimate the CPT of B given it has two
parents, A,C:

P(Bi | Aj ,Ck ) ∼ NBiAjCk/NAjCk (1)
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Parameter Learning

Smoothing

• When we estimate probabilities from data, it can
sometimes happen that a particular event never occurs
– the corresponding probability value is zero, implying
an impossible case

• The previous situation can be avoided by using some
type of smoothing for the probabilities, eliminating zero
probability values

• There are several smoothing techniques, one of the
most common and simplest is Laplacian smoothing
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Parameter Learning

Laplacian smoothing

• Laplacian smoothing consists in initializing the
probabilities to a uniform distribution, and then updating
these values based on the data

• Consider a discrete variable, X , with k possible values.
Initially, each probability will be set to P(xi) = 1/k

• Data set with N samples, in which the value xi occurs m
times; the estimate of its probability will be the following:

P(xi) = (1 + m)/(k + N) (2)
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Parameter Learning

Parameter uncertainty

• If there is not sufficient data we have uncertainty in the
parameters

• This uncertainty can be modelled using a second order
probability distribution

• For binary variables, the uncertainty in the parameters
can be modelled using a Beta distribution:

β(a,b) =
(a + b + 1)!

a!b!
xa(1− x)b (3)

• For multivalued variables, uncertainty in the parameters
can be represented by the Dirichlet distribution
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Parameter Learning

Representing expert’s uncertainty

• For the binary case, the expected value of the Beta
distribution is given by: P(bi) = (a + 1)/(a + b + 2),
where a and b are the parameters of the Beta
distribution

• The parameters of the Beta distribution can represent a
measure of confidence in the expert’s estimates,
expressed by varying the term a + b:

• Complete ignorance: a = b = 0.
• Low confidence: a + b small (10).
• Medium confidence: a + b intermediate (100).
• High confidence: a + b large (1000).
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Parameter Learning

Combining expert estimate and data

• This representation could be used to combine experts’
estimations with data

• To approximate the probability value of a binary
variable, bi we can use:

P(bi) = (k + a + 1)/(n + a + b + 2) (4)

Where a/(a + b) represents the expert’s estimate, and
k/n is the probability obtained from the data
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Parameter Learning

Example

• Assume an expert gives an estimate of 0.7 for a certain
parameter, and that the experimental data provides 40
positive cases among 100 samples. Given the expert’s
estimate with different confidence:

Low confidence (a + b = 10):
P(bi) =

40+7+1
100+10+2 = 0.43

Medium confidence (a + b = 100):
P(bi) =

40+70+1
100+100+2 = 0.55

High confidence (a + b = 1000):
P(bi) =

40+700+1
100+1000+2 = 0.67
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Parameter Learning Missing data

Incomplete data

• Another common situation is to have incomplete data:
Missing values: In some registers there are missing

values for one or more variables.
Hidden nodes: A variable or set of variables in the

model for which there is no data at all.
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Parameter Learning Missing data

Missing values

• There are several alternatives:
1 Eliminate the registers with missing values.
2 Consider a special “unknown” value.
3 Substitute the missing value by the most common value

(mode) of the variable.
4 Estimate the missing value based on the values of the

other variables in the corresponding register.

• In general the best alternative is the fourth option
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Parameter Learning Missing data

Estimating missing values

• Learn the parameters of the BN based on the complete
registers, and then complete the data and re-estimate
the parameters:

1 Instantiate all the known variables in the register.
2 Through probabilistic inference obtain the posterior

probabilities of the missing variables.
3 Assign to each variable the value with highest posterior

probability.
4 Add this completed register to the database and

re-estimate the parameters.

• An alternative is to assign a partial case for each value
of the variable proportional to the posterior probability.
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Parameter Learning Missing data

Hidden nodes

• An approach to estimate their parameters is based on
the Expectation–Maximization (EM) technique

• It consists of two phases which are repeated iteratively:
E step: the missing data values are estimated

based on the current parameters.
M step: the parameters are updated based on the

estimated data.
• The algorithm starts by initializing the missing

parameters with random values
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Parameter Learning Missing data

Algorithm

1 Obtain the CPTs for all the complete variables (the
values of the variable and all its parents are in the
database) based on a ML estimator.

2 Initialize the unknown parameters with random values.
3 Considering the actual parameters, estimate the values

of the hidden nodes based on the known variables via
probabilistic inference.

4 Use the estimated values for the hidden nodes to
complete/update the database.

5 Re-estimate the parameters for the hidden nodes with
the updated data.

6 Repeat 3–5 until converge (no significant changes in
the parameters).
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Parameter Learning Missing data

Example - golf data

Outlook Temperature 1 Humidity Wind Play
sunny xxx high – N
sunny high high – N
overcast high high – P
rainy medium high – P
rainy low normal – P
rainy low normal – N
overcast low normal – P
sunny medium high – N
sunny xxx normal – P
rainy medium normal – P
sunny medium normal – P
overcast medium high – P
overcast high normal – P
rainy medium high – N
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Parameter Learning Missing data

Example

• Assume that we learn a naive Bayes classifier
considering Play as the class variable

• Missing values – estimate the probability of temperature
for the registers in which it is missing, via probabilistic
inference:
Register 1: P(Temperature | sunny ,high,N)
Register 9: P(Temperature | sunny ,normal ,P)

• For the case of the hidden node, Wind, we cannot
obtain the corresponding CPT, P(Wind | Play)

• Apply the EM procedure, first pose initial random
parameters for the CPT:

P(Wind | Play) =
0.5 0.5
0.5 0.5

(L E Sucar: PGM) 17 / 55
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Parameter Learning Missing data

Example

• Given this CPT we have a complete initial model for the
NBC, and can estimate the probability of wind for each
register based on the values of the other variables in
the register

• By selecting the highest probability value for each
register, we can fill-in the table

• Based on this new data table, we re-estimate the
parameters, and obtain a new CPT:

P(Wind | Play) =
0.60 0.44
0.40 0.56

• The process is then repeated until he EM procedure
has converged

(L E Sucar: PGM) 18 / 55
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Parameter Learning Missing data

Example - completed data set

Outlook Temperature 1 Humidity Wind Play
sunny medium high no N
sunny high high no N
overcast high high no P
rainy medium high no P
rainy low normal yes P
rainy low normal yes N
overcast low normal yes P
sunny medium high no N
sunny medium normal no P
rainy medium normal no P
sunny medium normal yes P
overcast medium high yes P
overcast high normal yes P
rainy medium high yes N

(L E Sucar: PGM) 19 / 55
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Parameter Learning Discretization

Discretization

• Usually Bayesian networks consider discrete or nominal
values.

• An alternative to include continuous variables in BNs is
to discretize them.

• Discretization methods can be (i) unsupervised and (ii)
supervised.
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Parameter Learning Discretization

Unsupervised Discretization

• The two main types of unsupervised discretization
approaches are: equal width and equal data.

• Equal width consists in dividing the range of a variable,
[Xmin;Xmax ], in k equal bins; such that each bin has a
size of [Xmin;Xmax ]/k

• Equal data divides the range of the variable in k
intervals, such that each interval includes the same
number of data points from the training data

(L E Sucar: PGM) 21 / 55
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Parameter Learning Discretization

Supervised Discretization

• Supervised discretization considers the task to be
performed with the model, such that the variables are
discretized to optimize this task, for instance
classification accuracy

• If we consider a BN for classification with continuous
attribute variables, these are discretized according to
the class values

• Consider the attribute variable X with range
[Xmin;Xmax ] – he problem is to determine the optimal
partition of X such that the classifier precision is
maximized

(L E Sucar: PGM) 22 / 55
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Parameter Learning Discretization

Algorithm

1 Generate all potential divisions in X which correspond
to a value in [Xmin;Xmax ] where there is a change in
the class value.

2 Based on the potential division points generate an initial
set of n intervals.

3 Test the classification accuracy of the Bayesian
classifier (usually on a different set of data known as a
validation set) according to the current discretization.

4 Modify the discretization by partitioning an interval or
joining two intervals.

5 Repeat (3) and (4) until the accuracy of the classifier
cannot be improved or some other termination criteria
occurs.

(L E Sucar: PGM) 23 / 55
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Structure learning

• Structure learning consists in obtaining the topology of
the BN from the data

• This is a complex problem because: (i) the number of
possible structures is huge even with a few variables (it
is super-exponential on the number of variables); (ii) a
very large database is required to obtain good
estimates of the statistical measures

• There are several techniques depending on the type of
structure – trees, polytrees, general DAG

(L E Sucar: PGM) 24 / 55
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Structure Learning Trees

Tree learning - Chow and Liu algorithm

• The joint probability of n random variables can be
approximated as:

P(X1,X2, ...,Xn) =
n∏

i=1

P(Xi | Xj(i)) (5)

where Xj(i) is the parent of Xi in the tree.
• The problem consists in obtaining the best tree
• A measure of how close the approximation is based on

the information difference between the real distribution
(P) and the tree approximation (P∗) is as follows:

DI(P,P∗) =
∑

X

P(X )log(P(X )/P∗(X )) (6)

(L E Sucar: PGM) 25 / 55
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Structure Learning Trees

Tree learning

• The mutual information between any pair of variables is
defined as:

I(Xi ,Xj) =
∑
Xi ,Xj

P(Xi ,Xj)log(P(Xi ,Xj)/P(Xi)P(Xj)) (7)

• Given a tree-structured BN with variables X1,X2, ...,Xn,
we define its weight, W , as the sum of the mutual
information of the arcs:

W (X1,X2, ...,Xn) =
n−1∑
i=1

I(Xi ,Xj) (8)

• It can be shown that minimizing DI is equivalent to
maximizing W

(L E Sucar: PGM) 26 / 55
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Structure Learning Trees

Algorithm - maximum weight spanning
tree

1 Obtain the mutual information (I) between all pairs of
variables (for n variables, there are n(n − 1)/2 pairs).

2 Order the mutual information values in descending
order.

3 Select the pair with maximum I and connect the two
variables with an arc, this constitutes the initial tree

4 Add the pair with the next highest I to the tree, while
they do not make a cycle; otherwise skip it and continue
with the following pair.

5 Repeat 4 until all the variables are in the tree (n − 1
arcs).

(L E Sucar: PGM) 27 / 55
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Structure Learning Trees

Example - mutual information for golf

No. Var 1 Var 2 Mutual Info.
1 temp. outlook .2856
2 play outlook .0743
3 play humidity .0456
4 play wind .0074
5 humidity outlook .0060
6 wind temp. .0052
7 wind outlook .0017
8 play temp. .0003
9 humidity temp. 0

10 wind humidity 0

(L E Sucar: PGM) 28 / 55
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Structure Learning Trees

Example - tree

Directions of the arcs are arbitrary.
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Structure Learning Polytrees

Learning polytrees

• Chow and Liu algorithm obtains only the skeleton of the
tree

• Rebane and Pearl developed a method that can be
used to direct the arcs in the skeleton

• The algorithm is based on independence tests for
variable triplets, and in this way it can distinguish
convergent substructures

• Once one or more substructures of this type are
detected in the skeleton, it can direct additional arcs by
applying the independence tests to neighboring nodes

(L E Sucar: PGM) 30 / 55
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Structure Learning Polytrees

Independence tests

• Given three variables, there are three possibilities:

1 Sequential arcs: X → Y → Z .
2 Divergent arcs: X ← Y → Z .
3 Convergent arcs: X → Y ← Z .

• The first two cases are indistinguishable; however the
third case is different, since X and Z are NOT
independent given Y

• So this case can be used to determine the directions of
the two arcs that connect these three variables

(L E Sucar: PGM) 31 / 55
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Structure Learning Polytrees

Algorithm

1 Obtain the skeleton using the Chow and Liu algorithm.
2 Iterate over the network until a convergent variable

triplet is found. We will call the variable to which the
arcs converge a multi-parent node.

3 Starting with a multi-parent node, determine the
directions of other arcs using independence tests for
variable triplets. Continue this procedure until it is no
longer possible (causal base).

4 Repeat 2-3 until no other directions can be determined.
5 If any arcs are left undirected, use the external

semantics to infer their directions.

(L E Sucar: PGM) 32 / 55
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Structure Learning Polytrees

Example - golf

• Variable triplet H,P,W falls in the convergent case.
Then, the arcs will be directed such that H points to P
and W points to P

• If H and W are independent from O given P then there
will be an arc that points from P to O

• Finally, the dependence relation between P and T given
O is tested, and if they are again found to be
independent, then the arc points from O to T

(L E Sucar: PGM) 33 / 55
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Structure Learning Polytrees

Example - golf polytree
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Structure Learning Search and Score Techniques

General case

• For the general case several methods have been
proposed, which can be divided into two main classes:

1 Global methods: these perform a heuristic search over
the space of network structures, starting from some
initial structure, and generating a variation of the
structure at each step. The best structure is selected
based on a score that measures how well the model
represents the data. Common scores are BIC and MDL

2 Local methods: these are based on evaluating the
(in)dependence relations between subsets of variables
given the data, to sequentially obtain the structure of the
network. The most well known variant of this approach
is the PC algorithm

(L E Sucar: PGM) 35 / 55
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Structure Learning Search and Score Techniques

Global methods

• Global methods search for the best structure based on
a global metric

• Different structures are generated and these are
evaluated with respect to the data using some scoring
method

• There are several variants that depend on two aspects:
(i) a fitness measure between the structure and the
data, and (ii) a method for searching for the best
structure
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Structure Learning Search and Score Techniques

Scoring functions

• A scoring function evaluates how well a structure fits the
data

• Common scoring functions are: the maximum likelihood
(ML), the Bayesian information criterion (BIC), the
Bayesian score (BD), and the minimum description
length (MDL) criterion

• The score must balance the precision and complexity of
the model

(L E Sucar: PGM) 37 / 55
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Structure Learning Search and Score Techniques

K2 Metric

• This score is decomposable and it is calculated for each
variable Xi given its parents Pa(Xi):

Si =

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

αijk ! (9)

• Where ri is the number of values of Xi , qi is the number
of possible configurations for the parents of Xi , αijk is
the number of cases in the database where Xi = k and
Pa(Xi) = j , and Nij is the number of cases in the
database where Pa(Xi) = j

(L E Sucar: PGM) 38 / 55
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Structure Learning Search and Score Techniques

MDL
• The MDL measure makes a compromise between

accuracy and model complexity:

MC = α(W/Wmax) + (1− α)(1− L/Lmax) (10)

where W represents the accuracy of the model, and L
the complexity. Wmax and Lmax represent the
maximum accuracy and complexity

• Complexity is given by the number of parameters
required for representing the model:

L = Si [ki log2n + d(Si − 1)Fi ] (11)

where n is the number of nodes, k is the number of
parents per node, Si is the average number of values
per variable, Fi is the average number of values per
parent variable, and d the number of bits per parameter

(L E Sucar: PGM) 39 / 55
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Structure Learning Search and Score Techniques

MDL

• The accuracy can be estimated based on the ‘weight’ of
each node:

w(Xi ,Pa(Xi)) =∑
xi

P(Xi ,Pa(Xi))log[P(Xi ,Pa(Xi))/P(Xi)P(Pa(Xi))]

(12)
and the weight (accuracy) total is given by the sum of
the weights for each node:

W =
∑

i

w(Xi ,Pa(Xi)) (13)

(L E Sucar: PGM) 40 / 55
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Structure Learning Search and Score Techniques

Search Algorithms

• Since the number of possible structures is exponential
on the number of variables, heuristic approaches are
used for searching for the “best” structure

• One common strategy is to use hill climbing:
1 Generate an initial structure - tree
2 Calculate the fitness measure of the initial structure.
3 Add/ invert an arc from the current structure.
4 Calculate the fitness measure of the new structure.
5 If the fitness improves, keep the change; if not, return to

the previous structure.
6 Repeat 3 -5 until no further improvements exist.

• A common global method is K2

(L E Sucar: PGM) 41 / 55
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Structure Learning Search and Score Techniques

Example - global methods
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Local Methods

• The basic idea is to apply independence tests to sets of
variables to recover the structure of the BN

• A common local technique is the PC algorithm
• The PC algorithm first recovers the skeleton (underlying

undirected graph) of the BN, and then it determines the
orientation of the edges
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Structure Learning Local methods

PC

• To determine the skeleton, it starts from a fully
connected undirected graph, and determines the
conditional independence of each pair of variables
given some subset of the other variables - using the
conditional cross entropy measure

• In the second phase the direction of the edges are set
based on conditional independence tests between
variable triplets
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Structure Learning Local methods

Algorithm

1 Initialize a complete undirected graph G′

2 i = 0
3 For X ∈ X
4 For Y ∈ ADJ(X )

5 For S ⊆ ADJ(X )− {Y}, | S |= i
• If I(X ,Y | S): Remove the edge X − Y from G′

6 i = i + 1
7 Until | ADJ(X ) |≤ i , ∀X
8 Orient edges in G′

9 Return G
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Structure Learning Combining Expert Knowledge and Data

Combining Experts and Data

• When domain expertise is available, this can be
combined with learning algorithms to improve the model

• For structure learning, there are two basic approaches
to combine expert knowledge and data:

• Use expert knowledge as restrictions to reduce the
search space for the learning algorithm.

• Start from a structure proposed by an expert and use
data to validate and improve this structure.
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Structure Learning Combining Expert Knowledge and Data

Incorporating expert knowledge

• There are several ways to use expert knowledge to aid
the structure learning algorithm, such as:

1 Define an ordering for the variables (causal order), such
that there could be an arc from Xi to Xj only if Xj is after
Xi according to the specified ordering.

2 Define restrictions in terms of directed arcs that must
exist between two variables, i.e. Xi → Xj .

3 Define restrictions in terms of an arc between two
variables that could be directed either way.

4 Define restrictions in terms of pairs of variables that are
not directly related, that is, there must be no arc
between Xi and Xj .

5 Combinations of the previous restrictions.

• In the case of the second approach, the structural
improvement algorithm can be extended to general BN
structures, in particular for tree-structured BNs
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Applications

• There are many domains in which learning Bayesian
networks has been applied to get a better
understanding of the domain or make predictions based
on partial observations; for example medicine, finance,
industry and the environment, among others

• Next we present an example for modeling the air
pollution in Mexico City
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Applications

Air pollution model for Mexico City

• In Mexico City, the ozone level is used as a global
indicator for the air quality. The concentrations of ozone
are given in IMECA. It is important to predict the ozone
level to take emergency measures if the pollution level
is going to be above a certain threshold

• It is useful to know the dependencies between the
different variables that are measured:

• Determine which factors are more important for the
ozone concentration in Mexico City.

• Simplify the estimation problem, by taking into account
only the relevant information.

• Discover the most critical primary causes of pollution in
Mexico City; these could help in future plans to reduce
pollution.
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Learning a BN for Air Pollution

• Apply a learning algorithm to obtain an initial structure
of the phenomena

• 47 variables: 9 measurements for each of the 5 stations,
plus the hour and month in which they were recorded

• We used nearly 400 random samples, and applied the
Chow and Liu algorithm to obtain the tree structure that
best approximates the data distribution
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Model
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Analysis

• From this initial structure we can get an idea of the
relevance or influence of the other variables for
estimating ozone-Pedregal. The nodes “closest” to the
root are the most important ones, and the “far-away”
nodes are less important.

• In this case we observe that there are 3 variables
(ozone-Merced, ozone-Xalostoc, and wind velocity in
Pedregal) that have the greatest influence in
ozone-Pedregal

• We estimated ozone-Pedregal using only these 3
variables – the average error (absolute difference
between the real and the estimated ozone
concentration) is 11 IMECA or 12%, and for non-training
data it is 26 IMECA or 22%
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