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Inference - Multiconnected networks

Multiconnected
Networks

e There are several classes of algorithms for probabilistic
inference on multi conneced BNs:
¢ variable elimination,
¢ conditioning,
e junction tree.
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Variable Elimination

Variable Elimination

Variable Elimination

¢ The variable elimination technique is based on the idea
of calculating the probability by marginalizing the joint
distribution

e |t takes advantage of the independence conditions of
the BN and the associative and distributive properties of
addition and multiplication to do the calculations more
efficiently:

@ Represent the joint distribution as a product of local
probabilities according to the network structure

@® Summations can be carried out only on the subset of
terms which are a function of the variables being
normalized
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Variable Elimination

Variable Elimination

e Joint probability distribution of X = {Xi, Xz, ..., Xn}

e Posterior probability of a certain variable or subset of
variables, Xy, given a subset of evidence variables, Xg;
the remaining variables are Xg, such that

X = {XH UXegU XR}Z

P(Xu | Xe) = P(Xu, Xg)/ P(XE) (1)

e We can obtain both terms via marginalization of the
joint distribution:

P(Xu, Xe) = Z P(X (2)

and

P(Xg) = P(Xu, Xe) (3)
Xu
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Variable Elimination

VE - illustration

Variable Elimination

e Obtain P(A | D) - we need to obtain P(A, D) and P(D).

(L E Sucar: PGM) 6/67



Variable Elimination

VE - calculations

e Eliminate B, C, E from the joint distribution, that is:

Variable Elimination

P(A, D) =
ZZZP AP(B| AP(C | AP(D| B,C)P(E | C)
B

e By d/str/but/ng the summations we can arrive to the
following equivalent expression:

P(A,D) =
A)Y P(B|A)Y P(C|APD|B,C)> PE|C)
B C E

e If all variables are binary, this implies a reduction from
32 operations to 9 operations
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Variable Elimination

VE - example

Variable Elimination

e Obtain P(E| F=fi))=P(E,F=1;)/P(F=1f)
e Joint distribution:
P(C,E,F,D)= P(C)P(E | C)P(F | E)P(D | E)

(L E Sucar: PGM)
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Variable Elimination

VE - example

e First calculate P(E, F); by reordering the operationS'
Variable Elimination P(E7 F) — Z P(F ‘ D ’ E Z P E ’ C
D

e Calculation for each value of E, given F = f;:
61,f1 ZPf1|e1 D|e1 ZP e1|C

P(ey, f) ZPﬁ | e1)P(D | €1)[0.9 x 0.8 + 0.7 x 0.2]

P(er,fy)=>_P(f; | &)P(D| 1)[0.86]
D

P(ei, f;) = [0.9 x 0.7 + 0.9 x 0.3][0.86]

P(eq, f;) = [0.9][0.86] = 0.774
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Variable Elimination

VE - example

Variable Elimination

e In a similar way we obtain P(e», f;); and then from these
values we can calculate P(fi) = > g P(E. f;)

¢ Finally, we calculate the posterior probability of E given
f1Z
P(e1 ’ f1) = P(e1, f1 )/P(f1) and
P(ez | fi) = P(e2, f1)/P(f)
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Variable Elimination

Analysis

e The critical aspect of the variable elimination algorithm
is to select the appropriate order for eliminating each
variable, as this has an important effect on the number
of required operations

¢ The different terms that are generated during the
calculations are known as factors which are functions
over a subset of variables, in the previous example, one
of the factors is f(C, E) = P(C)P(E | C)

e The computational complexity in terms of space and
time of the variable elimination algorithm is determined
by the size of the factors — is exponential on the number
of variables in the factor.
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Variable Elimination

Elimination Order

e Finding the best order is in general a NP-Hard problem

e There are several heuristics that help to determine a
good ordering for variable elimination:

Min-degree: eliminate the variable that leads to the
smallest possible factor; which is
equivalent to eliminating the variable with
the smallest number of neighbors in the
current elimination graph.

Min-fill: eliminate the variable that leads to adding
the minimum number of edges to the
interaction graph.

e These heuristics can be explained based on the
interaction graph —an undirected graph that is built
during the process of variable elimination

Variable Elimination
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Variable Elimination

Interaction graph

e When X; is eliminated the interaction graph is modified:
(i) adding an arc between each pair of neighbors of Xj,
(ii) deleting variable X; from the graph
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Variable Elimination

Analysis

¢ A disadvantage of variable elimination is that it only
obtains the posterior probability of one variable

e To obtain the posterior probability of each
non-instantiated variable in a BN, the calculations have
to be repeated for each variable

¢ Next, we describe two algorithms that calculate the
posterior probabilities for all variables at the same time
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Conditioning

Conditioning

e The conditioning method is based on the fact that an
instantiated variable blocks the propagation of the
evidence in a Bayesian network

e |t cuts the graph at the instantiated variables, and this
can transform a multi connected graph into a polytree,
for which we can apply the probability propagation
algorithm

e |f these variables are not actually known, we can set
them to each of their possible values, and then do
probability propagation for each value

e With each propagation we obtain a probability for each
unknown variable — the final probability values are
obtained as a weighted combination of these
probabilities
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Conditioning

Formalization

e Formally, we want to obtain the probability of any
variable, B, given the evidence E, conditioning on
variable A. By the rule of total probability:

P(B| E) = ZPB|Ea, (ai | E) (4)

e Where:
P(B | E, a)) is the posterior probability of B which is
obtained by probability propagation for
each possible value of A.
P(a; | E) is a weight.
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Conditioning

Formalization

e By applying the Bayes rule we obtain the following
equation to estimate the weights:

P(a; | E) = aP(a;))P(E | &) (5)

e The first term, P(a;), can be obtained by propagating
without evidence. The second term, P(E | g;), is
calculated by propagation with A = a; to obtain the
probability of the evidence variables. « is a normalizing
constant
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Conditioning

Example

e If the evidence is D, E, then probabilities for the other
variables, A, B, C can be obtained via conditioning
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Conditioning

Example

@ Obtain the prior probability of A (in this case it is already
given as it is a root node).

@® Obtain the probability of the evidence nodes D, E for
each value of A by propagation in the polytree.

@ Calculate the weights, P(a; | D, E), from (1) and (2) with
the Bayes rule.

@ Estimate the probability of B and C for each value of A
given the evidence by probability propagation in the
polytree.

@ Obtain the posterior probabilities for B and C from (3)
and (4) by applying equation 4.
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Conditioning

Analysis

¢ In general, to transform a multi connected BN to a
polytree we need to instantiate m variables

e Thus, propagation must be performed for all the
combinations of values (cross product) of the
instantiated variables

e If each variable has k values, then the number of
propagations is k™

(L E Sucar: PGM)
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Junction Tree Algorithm

Junction Tree

e The junction tree method is based on a transformation
of the BN to a junction tree, where each node in this
tree is a group or cluster of variables

¢ Probabilistic inference is performed over this new
representation, via propagation over the junction tree

¢ The probability of a variable is obtained by

marginalization over the corresponding “junction”
(clique)
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Junction Tree Algorithm

Transformation

@ Eliminate the directionality of the arcs.

® Order the nodes in the graph (based on maximum
cardinality).

@® Moralize the graph (add an arc between pairs of nodes
with common children).

@ If necessary add additional arcs to make the graph
triangulated.

@ Obtain the cliques of the graph (subsets of nodes that
are fully connected and are not subsets of other fully
connected sets).

@ Build a junction tree in which each node is a clique and

its parent is any node that contains all common
previous variables according to the ordering.
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Junction Tree Algorithm

Transformation - example

Junction Tree
Algorithm
1,2,3
2,3,4
3,6

(a) (b) (c)
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Junction Tree Algorithm

Inference

¢ Once the junction tree is built, inference is based on
probability propagation over the junction tree

e Initially the joint probability (potential) of each macro
node is obtained, and given some evidence, this is
propagated to obtain the posterior probability of each
junction

e The individual probability of each variable is obtained
from the joint probability of the appropriate junction via
marginalization
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Junction Tree Algorithm

Preprocessing

In the preprocessing phase the potentials of each clique are
obtained following the next steps:
@ Determine the set of variables for each clique, C;.
@® Determine the set of variables that are common with the
previous (parent) clique, S;.
@® Determine the variables that are in C; but not in S;:
R =C;-S,.
@ Calculate the potential of each clique, clg;, as the
product of the corresponding CPTs:
¥(clg;) = I1; P(X; | Pa(X;)); where X; are the variables
in clq;.
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Junction Tree Algorithm

Preprocessing - example

Cliques: clgy = {1,2,3}, clgp = {2,3,4}, clgz = {3,5}.
Then the preprocessing phase is:
C: Ci={1,2,3}, Co ={2,3,4}, C3 = {3,5}.
S: §1=0,5 ={2,3}, S3 = {3}.
R: R1 = {1,2,3}, Rg = {4}, R3 = {5}
Potentials: ¥ (clg;) = P(1)P(2 | 1)P(3 | 2),
Y(clge) = P(43,2), ¥(clgs) = P(5 | 3).
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Junction Tree Algorithm

Propagation

e The propagation phase proceeds in a similar way to
belief propagation for trees, by propagating A messages
bottom-up and = messages top-down

e Bottom-Up Propagation

@ Calculate the A message to send to the parent clique:
A(Ci) = >_p(Gi).

® Update the potential of each clique with the A messages
of its sons: ¢(C;) = AMC))¥(C;).

@® Repeat the previous two steps until reaching the root
clique.

o Wﬂen reaching the root node obtain P'(C,) = y(C;)'.
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Junction Tree Algorithm

Propagation

e Top-Down Propagation
@ Calculate the 7 message to send to each child node i:
©(C) =Yg _s P(C)-
@® Update the potential of each clique when receiving the =
message of its parent: P'(C;) = n(Ci)y(C;) .
@® Repeat the previous two steps until reaching the leaf
nodes in the junction tree.
e When there is evidence, the potentials for each clique
are updated based on the evidence, and the same
propagation procedure is followed

e Finally, the marginal posterior probabilities of each
variable are obtained from the clique potentials via
marginalization: P(X) = > c_x P'(Ci)
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Junction Tree Algorithm

Complexity analysis

e In the worst case, probabilistic inference for Bayesian
networks is NP-Hard

e The time and space complexity is determined by what is
known as the tree-width - a tree-structured BN
(maximum one parent per variable) has a tree-width of
one. A polytree with at most k parents per node has a
tree-width of k

¢ In general, the tree-width is determined by how dense
the topology of the network is, and this affects:
(i) the size of the largest factor in the variable elimination
algorithm; (ii) the number of variables that need to be
instantiated in the conditioning algorithm, (iii) the size of
the largest clique in the junction tree algorithm

(L E Sucar: PGM) 29/67



Loopy Propagation

Loopy Propagation

e This is simply the application of the probability
propagation algorithm for multi connected networks

¢ Although in this case the conditions for this algorithm
are not satisfied, and it only provides an approximate
solution

e Given that the BN is not singly connected, as the

messages are propagated, these can loop through the
network
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Loopy Propagation

Procedure

@ Initialize the X and = values for all nodes to random

. values.

® Repeat until convergence or a maximum number of
iterations:

@ Do probability propagation according to the algorithm for
singly connected networks.
@® Calculate the posterior probability for each variable.
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Loopy Propagation

Convergence

e The algorithm converges when the difference between
the posterior probabilities for all variables of the current
and previous iterations is below a certain threshold

e It has been found empirically that for certain structures
this algorithm converges to the true posterior
probabilities; however, for other structures it does not
converge

Loopy Propagation

e An important application of loopy belief propagation is in
“Turbo Codes”; which is a popular error detection and
correction scheme used in data communications

(L E Sucar: PGM) 32/67



Stochastic Simulation

Stochastic simulation

e Stochastic simulation algorithms consist in simulating
the BN several times, where each simulation gives a
sample value for all non-instantiated variables

e These values are chosen randomly according to the
conditional probability of each variable

e This process is repeated N times, and the posterior
probability of each variable is approximated in terms of
the frequency of each value in the sample space
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Stochastic Simulation
Logic Sampling

¢ Logic sampling is a basic stochastic simulation
algorithm that generates samples according to the
following procedure:

@ Generate sample values for the root nodes of the BN
according to their prior probabilities. That is, a random
value is generated for each root variable X, following a
distribution according to P(X).

@® Generate samples for the next /ayer, that is the sons of
the already sampled nodes, according to their
conditional probabilities, P(Y | Pa(Y)), where Pa(Y) are
the parents of Y.

@® Repeat (2) until all the leaf nodes are reached.

e The previous procedure is repeated N times to generate
N samples. The probability of each variable is estimated
as the fraction of times (frequency) that a value occurs
in the N samples, that is, P(X = x;) ~ No(x;)/N
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Stochastic Simulation

Example

10 samples generated by logic sampling (assuming all
variables are binary):

variables |[A- B C D E
sampley | T F F F T
samplec |F T T F F
samples | T F F T F
sample, |F F T F T
samples | T F T T F
samples |F F F F T
sample; |F T T T F
samples |F F F F F
sampleg |F F F T F
sampleqg | T T T T F
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Stochastic Simulation

Probabilities - no evidence

If there is no evidence, then given these samples, the
marginal probabilities are estimated as follows:

o« PA=T)=4/10=04

e P(B=T)=3/10=0.3
e« P(C=T)=5/10=05
e« P(D=T)=5/10=05
e« P(E=T)=3/10=0.3
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Stochastic Simulation

Probabilities - with evidence

In the case where there is evidence with D = T, we
eliminate all the samples where D = F, and estimate the
posterior probabilities from the remaining 5 samples:

e PA=T|D=T)=3/5=06
e PB=T|D=T)=2/5=04
e P(C=T|D=T)=3/5=06
e PE=T|D=T)=1/5=02
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Stochastic Simulation

Likelihood Weighting

¢ A disadvantage of logic sampling when evidence exists
is that many samples have to be discarded

¢ Likelihood weighting generates samples in the same
way as logic sampling, however when there is evidence
the non-consistent samples are not discarded

e Each sample is given a weight according to the weight
of the evidence for this sample
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Stochastic Simulation

Weighting

e Given a sample s and the evidence variables
E = {Eq, ..., Em}, the weight of sample s is estimated
as:

W(E | s) = P(E1)P(E2)...P(Em) (6)
where P(E;) is the probability of the evidence variable
E; for that sample

e The posterior probability for each variable X taking
value x; is estimated by dividing the sum of the weights
W;(X = x;) for each sample where X = x; by the total
weight for all the samples:

PX=x)~ SSWi(X=x)/ W, ()
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MPE

e The most probable explanation (MPE) or abduction
problem consists in determining the most probable
values for a subset of variables (explanation subset) in

a BN given some evidence

Sxpiantion « Two variants: total abduction and partial abduction

¢ In the total abduction problem, the explanation subset is
the set of all non-instantiated variables

e In partial abduction, the explanation subset is a proper
subset of the non-instantiated variables
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Formally

e Consider the set of variables X = {Xg, Xg, Xy}, where
Xg is the subset of instantiated variables; then we can
i s formalize the MPE problems as follows:
Total abduction: ArgMaxXH’XHP(XH, Xgr | XE)
Partial abduction: ArgMaxx,, P(Xy | Xg).
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Solution

e One way to solve the MPE problem is based on a
modified version of the variable elimination algorithm

¢ Total abduction, we substitute the summations by
maximizations:

Most probable maXXH,XHP(XHaXR | XE)

explanation

e Partial abduction, we sum over the variables that are
not in the explanation subset and maximize over the
explanation subset:
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Continuous variables

e When dealing with continuos variables, one option is to
discretize them; however, this could result in a loss of
information or in an unnecessary increase in
computational requirements

¢ Another alternative is to operate directly on the
Continuous continuous distributions

variables

¢ Probabilistic inference techniques have been developed
for some distribution families, in particular for Gaussian
variables
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Gaussian variables

The basic algorithm makes the following assumptions:
@ The structure of the network is a polytree.

® All the sources of uncertainty are Gaussians and
uncorrelated.

@ There is a linear relationship between each variable and
its parents:

Continuous
variables

X=biUi +bolUs+...+ byU, + Wy

Where U; are parents of variable X, b; are constant
coefficients and Wy represents Gaussian noise with a
zero mean.
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Inference

e The inference procedure is analogous to belief
propagation in discrete BNs, but instead of propagating
probabilities, it propagates means and standard
deviations

e The posterior probability of a variable can be written as:

Continuous P(X | E) = N(MX, O'X)

variables
Where pux and ox are the mean and standard deviation
of X given the evidence E, respectively.

e We calculate the mean and standard deviation for each
variable via a propagation algorithm
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Propagation

e Each variable sends to its parent variable i:

pr = (1/0)lpa — > bipy] (8)
k£i
of =(1/6F)lox — Y bfo}] (9)
ki
Continuous e Each variable sends to its child node j:
L kP /oKt pix/o7]
;= — (10)
ke 1ok + bix/ox
o =D _1/ox +1/0x]" (11)

ki
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Propagation

e Each variable integrates the messages it receives from
its sons and parents via the following equations:

i
ox =Y biof (13)

Continuous i

variables

,UAZUAZM,-_/U/_ (14)

i
=0 _1/o;]" (15)

i
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o Finally, each variable obtains its mean and standard
deviation by combining the information from its parent
and children nodes:

px = TR Dl (16)
Or + 0

OnO)

(17)

ox =
Continuous or + o)

e e Propagation for other distributions is more difficult, as
they do not have the same properties of the Gaussian;
in particular, the product of Gaussians is also a
Gaussian
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Information Validation

Information validation

e Many systems use information to make decisions; if this
information is erroneous it could lead to non-optimal
decisions

¢ In many applications there are different sources of
information, i.e. sensors, which are not independent;
the information from one source gives us clues about
the other sources

¢ If we can represent these dependencies between the

different sources, then we can use it to detect possible

errors and avoid erroneous decisions
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Information Validation

Algorithm

¢ The algorithm starts by building a model of the
dependencies between sources of information
(variables) represented as a Bayesian network

¢ The validation is done in two phases. In the first phase,
potential faults are detected by comparing the actual
value with the one predicted from the related variables

¢ In the second phase, the real faults are isolated by
constructing an additional Bayesian network based on
the Markov blanket property
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Information Validation

Fault detection

¢ Build a probabilistic model relating all the variables in
the application domain

e Example - gas turbine:
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Information Validation

Fault detection

e Suppose it is required to validate the temperature
measurements in the turbine

¢ By reading the values of the rest of the sensors, and
applying probability propagation, it is possible to
calculate a posterior probability distribution of the
temperature given all the evidence, i.e.,
P(T | Mw, P, Fg, Pc, Pv, Ps)

e |f the real observed value coincides with a valid value —
that has a high probability, then the sensor is
considered correct; otherwise it is considered faulty
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Information Validation

Fault detection

e |f a validation of a single sensor is made using a faulty
sensor, then a faulty validation can be expected

¢ In the example above, what happens if T is validated
using a faulty Mw sensor?

e By applying this validation procedure, we may only
detect a faulty condition, but we are not able to identify
which is the real faulty sensor — apparent fault

¢ An isolation stage is needed

e Sis the set of variables with apparent faults detected in
the first phase
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Information Validation

Fault isolation

e The isolation phase is based on the Markov Blanket
(MB) property
e The Extended Markov Blanket of a node X (EMB(X))

as the set of sensors formed by the sensor itself plus its
MB

o For example, EMB(Fg) = {Fg, Pv,Ps, T}

¢ Utilizing this property, if a fault exists in one of the
sensors, it will be revealed in all of the sensors in its
EMB. On the contrary, if a fault exists outside a sensors’
EMB, it will not affect the estimation of that sensor

e The EMB is used to create a fault isolation module that
distinguishes the real faults from the apparent faults
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Information Validation

Fault isolation theory

© If S = ¢ there are no faults.

® If Sis equal to the EMB of a sensor X, and there is no
other EMB which is a subset of S, then there is a single
real faultin X.

@ If Sis equal to the EMB of a sensor X, and there are
one or more EMBs which are subsets of S, then there is
a real fault in X, and possibly, real faults in the sensors
whose EMBs are subsets of S. In this case, there are
possibly multiple indistinguishable real faults.

@ If Sis equal to the union of several EMBs and the
combination is unique, then there are multiple
distinguishable real faults in all the sensors whose EMB
arein S.

@® If none of the above cases is satisfied, then there are
multiple faults but they can not be distinguished
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Information Validation

Isolation network

e The isolation network is formed by two levels:
¢ The root nodes represent the real faults, where there is
one per sensor or variable
e The lower level is formed by one node representing the
apparent fault for each variable. Notice that the arcs are
defined by the EMB of each variable
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Reliability Analysis

Reliability analysis

¢ In the reliability analysis of a complex system, a
common approach is to divide the system into smaller
elements, units, subsystems, or components

e This subdivision generates a “block diagram” that is
similar to the description of the system in operation

e For each element, the failure rate is specified, and
based on these, the reliability of the complete system is
obtained

¢ Traditional techniques assume that faults are

independent
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Reliability Analysis

Reliability modeling with BN

¢ In a block diagram representation there are two basic
structures: serial and parallel components

¢ A serial structure implies that the two components
should operate correctly for the system to function

e In parallel structures, it is sufficient for one of the
components to operate for the system to function

A
Reliability Analysis — A — B —_
B

(L E Sucar: PGM) 58/67



Reliability Analysis

Basic structures

¢ The basic series and parallel block diagrams can be
represented with a Bayesian network

e The structure is the same in both cases, the difference
is the conditional probability matrix

Reliability Analysis

(a) (b)
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Reliability Analysis

Reliability Analysis

CPTs

e Series (AND):
X AB A-B -AB -A-B
Success | 1 0 0 0
Failure 0 1 1 1

e Parallel (OR):
X AB A-B -AB -A-B
Success 1 1 1 0
Failure 0 0 0 1

(L E Sucar: PGM)
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Reliability Analysis

Extending the basic models

e The BN representation of the basic serial/parallel cases
can be directly generalized to represent any block
diagram that can be reduced to a set of serial and
parallel combinations of components

e There are some structures that can not be decomposed
to a serial/parallel combination, such as a bridge.
However, it is also possible to model these cases using

Reliability Analysis B N S
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Reliability Analysis
Example

e Suppose that a system has two components that are
affected by three possible failure sources. Source S;
affects component C4, source S, affects component C,,
and source S; affects both components (common
cause)

¢ In the BN, the CPT for all three non root nodes (Cy, Co»,
X) is equivalent to that of a serial component
combination

Reliability Analysis
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