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Multiconnected Networks

Inference - Multiconnected networks

• There are several classes of algorithms for probabilistic
inference on multi conneced BNs:

• variable elimination,
• conditioning,
• junction tree.

(L E Sucar: PGM) 3 / 67
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Multiconnected Networks Variable Elimination

Variable Elimination

• The variable elimination technique is based on the idea
of calculating the probability by marginalizing the joint
distribution

• It takes advantage of the independence conditions of
the BN and the associative and distributive properties of
addition and multiplication to do the calculations more
efficiently:

1 Represent the joint distribution as a product of local
probabilities according to the network structure

2 Summations can be carried out only on the subset of
terms which are a function of the variables being
normalized
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Variable Elimination
• Joint probability distribution of X = {X1,X2, ...,Xn}
• Posterior probability of a certain variable or subset of

variables, XH , given a subset of evidence variables, XE ;
the remaining variables are XR, such that
X = {XH ∪ XE ∪ XR}:

P(XH | XE) = P(XH ,XE)/P(XE) (1)

• We can obtain both terms via marginalization of the
joint distribution:

P(XH ,XE) =
∑
XR

P(X) (2)

and
P(XE) =

∑
XH

P(XH ,XE) (3)
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Multiconnected Networks Variable Elimination

VE - illustration

• Obtain P(A | D) - we need to obtain P(A,D) and P(D).

(L E Sucar: PGM) 6 / 67
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VE - calculations

• Eliminate B,C,E from the joint distribution, that is:

P(A,D) =∑
B

∑
C

∑
E

P(A)P(B | A)P(C | A)P(D | B,C)P(E | C)

• By distributing the summations we can arrive to the
following equivalent expression:

P(A,D) =

P(A)
∑

B

P(B | A)
∑

C

P(C | A)P(D | B,C)
∑

E

P(E | C)

• If all variables are binary, this implies a reduction from
32 operations to 9 operations

(L E Sucar: PGM) 7 / 67



Multiconnected
Networks
Variable Elimination

Conditioning

Junction Tree
Algorithm

Approximate
Inference
Loopy Propagation

Stochastic
Simulation

Most probable
explanation

Continuous
variables

Applications
Information
Validation

Reliability Analysis

References

Multiconnected Networks Variable Elimination

VE - example

• Obtain P(E | F = f1) = P(E ,F = f1)/P(F = f1)
• Joint distribution:

P(C,E ,F ,D) = P(C)P(E | C)P(F | E)P(D | E)

(L E Sucar: PGM) 8 / 67
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VE - example
• First calculate P(E ,F ); by reordering the operations:

P(E ,F ) =
∑

D

P(F | E)P(D | E)
∑

C

P(C)P(E | C)

• Calculation for each value of E , given F = f1:

P(e1, f1) =
∑

D

P(f1 | e1)P(D | e1)
∑

C

P(C)P(e1 | C)

P(e1, f1) =
∑

D

P(f1 | e1)P(D | e1)[0.9× 0.8 + 0.7× 0.2]

P(e1, f1) =
∑

D

P(f1 | e1)P(D | e1)[0.86]

P(e1, f1) = [0.9× 0.7 + 0.9× 0.3][0.86]

P(e1, f1) = [0.9][0.86] = 0.774
(L E Sucar: PGM) 9 / 67
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VE - example

• In a similar way we obtain P(e2, f1); and then from these
values we can calculate P(f1) =

∑
E P(E , f1)

• Finally, we calculate the posterior probability of E given
f1:
P(e1 | f1) = P(e1, f1)/P(f1) and
P(e2 | f1) = P(e2, f1)/P(f1)
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Analysis

• The critical aspect of the variable elimination algorithm
is to select the appropriate order for eliminating each
variable, as this has an important effect on the number
of required operations

• The different terms that are generated during the
calculations are known as factors which are functions
over a subset of variables, in the previous example, one
of the factors is f (C,E) = P(C)P(E | C)

• The computational complexity in terms of space and
time of the variable elimination algorithm is determined
by the size of the factors – is exponential on the number
of variables in the factor.

(L E Sucar: PGM) 11 / 67
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Elimination Order

• Finding the best order is in general a NP-Hard problem
• There are several heuristics that help to determine a

good ordering for variable elimination:
Min-degree: eliminate the variable that leads to the

smallest possible factor; which is
equivalent to eliminating the variable with
the smallest number of neighbors in the
current elimination graph.

Min-fill: eliminate the variable that leads to adding
the minimum number of edges to the
interaction graph.

• These heuristics can be explained based on the
interaction graph –an undirected graph that is built
during the process of variable elimination

(L E Sucar: PGM) 12 / 67
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Interaction graph

• When Xj is eliminated the interaction graph is modified:
(i) adding an arc between each pair of neighbors of Xj ,
(ii) deleting variable Xj from the graph

(L E Sucar: PGM) 13 / 67
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Analysis

• A disadvantage of variable elimination is that it only
obtains the posterior probability of one variable

• To obtain the posterior probability of each
non-instantiated variable in a BN, the calculations have
to be repeated for each variable

• Next, we describe two algorithms that calculate the
posterior probabilities for all variables at the same time

(L E Sucar: PGM) 14 / 67
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Conditioning

• The conditioning method is based on the fact that an
instantiated variable blocks the propagation of the
evidence in a Bayesian network

• It cuts the graph at the instantiated variables, and this
can transform a multi connected graph into a polytree,
for which we can apply the probability propagation
algorithm

• If these variables are not actually known, we can set
them to each of their possible values, and then do
probability propagation for each value

• With each propagation we obtain a probability for each
unknown variable – the final probability values are
obtained as a weighted combination of these
probabilities

(L E Sucar: PGM) 15 / 67
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Formalization

• Formally, we want to obtain the probability of any
variable, B, given the evidence E , conditioning on
variable A. By the rule of total probability:

P(B | E) =
∑

i

P(B | E ,ai)P(ai | E) (4)

• Where:
P(B | E ,ai) is the posterior probability of B which is

obtained by probability propagation for
each possible value of A.

P(ai | E) is a weight.

(L E Sucar: PGM) 16 / 67
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Multiconnected Networks Conditioning

Formalization

• By applying the Bayes rule we obtain the following
equation to estimate the weights:

P(ai | E) = αP(ai)P(E | ai) (5)

• The first term, P(ai), can be obtained by propagating
without evidence. The second term, P(E | ai), is
calculated by propagation with A = ai to obtain the
probability of the evidence variables. α is a normalizing
constant

(L E Sucar: PGM) 17 / 67
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Example

• If the evidence is D,E , then probabilities for the other
variables, A,B,C can be obtained via conditioning

(L E Sucar: PGM) 18 / 67
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Multiconnected Networks Conditioning

Example

1 Obtain the prior probability of A (in this case it is already
given as it is a root node).

2 Obtain the probability of the evidence nodes D,E for
each value of A by propagation in the polytree.

3 Calculate the weights, P(ai | D,E), from (1) and (2) with
the Bayes rule.

4 Estimate the probability of B and C for each value of A
given the evidence by probability propagation in the
polytree.

5 Obtain the posterior probabilities for B and C from (3)
and (4) by applying equation 4.

(L E Sucar: PGM) 19 / 67
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Multiconnected Networks Conditioning

Analysis

• In general, to transform a multi connected BN to a
polytree we need to instantiate m variables

• Thus, propagation must be performed for all the
combinations of values (cross product) of the
instantiated variables

• If each variable has k values, then the number of
propagations is km

(L E Sucar: PGM) 20 / 67
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Multiconnected Networks Junction Tree Algorithm

Junction Tree

• The junction tree method is based on a transformation
of the BN to a junction tree, where each node in this
tree is a group or cluster of variables

• Probabilistic inference is performed over this new
representation, via propagation over the junction tree

• The probability of a variable is obtained by
marginalization over the corresponding “junction”
(clique)

(L E Sucar: PGM) 21 / 67
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Multiconnected Networks Junction Tree Algorithm

Transformation

1 Eliminate the directionality of the arcs.
2 Order the nodes in the graph (based on maximum

cardinality).
3 Moralize the graph (add an arc between pairs of nodes

with common children).
4 If necessary add additional arcs to make the graph

triangulated.
5 Obtain the cliques of the graph (subsets of nodes that

are fully connected and are not subsets of other fully
connected sets).

6 Build a junction tree in which each node is a clique and
its parent is any node that contains all common
previous variables according to the ordering.

(L E Sucar: PGM) 22 / 67
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Transformation - example

(L E Sucar: PGM) 23 / 67
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Multiconnected Networks Junction Tree Algorithm

Inference

• Once the junction tree is built, inference is based on
probability propagation over the junction tree

• Initially the joint probability (potential) of each macro
node is obtained, and given some evidence, this is
propagated to obtain the posterior probability of each
junction

• The individual probability of each variable is obtained
from the joint probability of the appropriate junction via
marginalization
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Preprocessing

In the preprocessing phase the potentials of each clique are
obtained following the next steps:

1 Determine the set of variables for each clique, Ci .
2 Determine the set of variables that are common with the

previous (parent) clique, Si .
3 Determine the variables that are in Ci but not in Si :

Ri = Ci − Si .
4 Calculate the potential of each clique, clqi , as the

product of the corresponding CPTs:
ψ(clqi) =

∏
j P(Xj | Pa(Xj)); where Xj are the variables

in clqi .

(L E Sucar: PGM) 25 / 67
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Multiconnected Networks Junction Tree Algorithm

Preprocessing - example

Cliques: clq1 = {1,2,3}, clq2 = {2,3,4}, clq3 = {3,5}.
Then the preprocessing phase is:

C: C1 = {1,2,3}, C2 = {2,3,4}, C3 = {3,5}.
S: S1 = ∅, S2 = {2,3}, S3 = {3}.
R: R1 = {1,2,3}, R2 = {4}, R3 = {5}.

Potentials: ψ(clq1) = P(1)P(2 | 1)P(3 | 2),
ψ(clq2) = P(4 | 3,2), ψ(clq3) = P(5 | 3).

(L E Sucar: PGM) 26 / 67
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Propagation

• The propagation phase proceeds in a similar way to
belief propagation for trees, by propagating λ messages
bottom-up and π messages top-down

• Bottom-Up Propagation
1 Calculate the λ message to send to the parent clique:
λ(Ci) =

∑
R ψ(Ci).

2 Update the potential of each clique with the λ messages
of its sons: ψ(Cj)

′ = λ(Ci)ψ(Cj).
3 Repeat the previous two steps until reaching the root

clique.
4 When reaching the root node obtain P ′(Cr ) = ψ(Cr )

′.

(L E Sucar: PGM) 27 / 67
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Propagation

• Top-Down Propagation
1 Calculate the π message to send to each child node i :
π(Ci) =

∑
Cj−Si

P ′(Cj).
2 Update the potential of each clique when receiving the π

message of its parent: P ′(Ci) = π(Ci)ψ(Ci)
′.

3 Repeat the previous two steps until reaching the leaf
nodes in the junction tree.

• When there is evidence, the potentials for each clique
are updated based on the evidence, and the same
propagation procedure is followed

• Finally, the marginal posterior probabilities of each
variable are obtained from the clique potentials via
marginalization: P(X ) =

∑
Ci−X P ′(Ci)

(L E Sucar: PGM) 28 / 67
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Complexity analysis

• In the worst case, probabilistic inference for Bayesian
networks is NP-Hard

• The time and space complexity is determined by what is
known as the tree-width - a tree-structured BN
(maximum one parent per variable) has a tree-width of
one. A polytree with at most k parents per node has a
tree-width of k

• In general, the tree-width is determined by how dense
the topology of the network is, and this affects:
(i) the size of the largest factor in the variable elimination
algorithm; (ii) the number of variables that need to be
instantiated in the conditioning algorithm, (iii) the size of
the largest clique in the junction tree algorithm

(L E Sucar: PGM) 29 / 67
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Loopy Propagation

• This is simply the application of the probability
propagation algorithm for multi connected networks

• Although in this case the conditions for this algorithm
are not satisfied, and it only provides an approximate
solution

• Given that the BN is not singly connected, as the
messages are propagated, these can loop through the
network

(L E Sucar: PGM) 30 / 67
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Procedure

1 Initialize the λ and π values for all nodes to random
values.

2 Repeat until convergence or a maximum number of
iterations:

1 Do probability propagation according to the algorithm for
singly connected networks.

2 Calculate the posterior probability for each variable.

(L E Sucar: PGM) 31 / 67
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Convergence

• The algorithm converges when the difference between
the posterior probabilities for all variables of the current
and previous iterations is below a certain threshold

• It has been found empirically that for certain structures
this algorithm converges to the true posterior
probabilities; however, for other structures it does not
converge

• An important application of loopy belief propagation is in
“Turbo Codes”; which is a popular error detection and
correction scheme used in data communications
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Stochastic simulation

• Stochastic simulation algorithms consist in simulating
the BN several times, where each simulation gives a
sample value for all non-instantiated variables

• These values are chosen randomly according to the
conditional probability of each variable

• This process is repeated N times, and the posterior
probability of each variable is approximated in terms of
the frequency of each value in the sample space
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Logic Sampling

• Logic sampling is a basic stochastic simulation
algorithm that generates samples according to the
following procedure:

1 Generate sample values for the root nodes of the BN
according to their prior probabilities. That is, a random
value is generated for each root variable X , following a
distribution according to P(X ).

2 Generate samples for the next layer, that is the sons of
the already sampled nodes, according to their
conditional probabilities, P(Y | Pa(Y )), where Pa(Y ) are
the parents of Y .

3 Repeat (2) until all the leaf nodes are reached.

• The previous procedure is repeated N times to generate
N samples. The probability of each variable is estimated
as the fraction of times (frequency) that a value occurs
in the N samples, that is, P(X = xi) ∼ No(xi)/N

(L E Sucar: PGM) 34 / 67
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Example

10 samples generated by logic sampling (assuming all
variables are binary):

variables A B C D E
sample1 T F F F T
sample2 F T T F F
sample3 T F F T F
sample4 F F T F T
sample5 T F T T F
sample6 F F F F T
sample7 F T T T F
sample8 F F F F F
sample9 F F F T F
sample10 T T T T F

(L E Sucar: PGM) 35 / 67
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Probabilities - no evidence

If there is no evidence, then given these samples, the
marginal probabilities are estimated as follows:
• P(A = T ) = 4/10 = 0.4
• P(B = T ) = 3/10 = 0.3
• P(C = T ) = 5/10 = 0.5
• P(D = T ) = 5/10 = 0.5
• P(E = T ) = 3/10 = 0.3
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Approximate Inference Stochastic Simulation

Probabilities - with evidence

In the case where there is evidence with D = T , we
eliminate all the samples where D = F , and estimate the
posterior probabilities from the remaining 5 samples:
• P(A = T | D = T ) = 3/5 = 0.6
• P(B = T | D = T ) = 2/5 = 0.4
• P(C = T | D = T ) = 3/5 = 0.6
• P(E = T | D = T ) = 1/5 = 0.2
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Likelihood Weighting

• A disadvantage of logic sampling when evidence exists
is that many samples have to be discarded

• Likelihood weighting generates samples in the same
way as logic sampling, however when there is evidence
the non-consistent samples are not discarded

• Each sample is given a weight according to the weight
of the evidence for this sample
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Approximate Inference Stochastic Simulation

Weighting

• Given a sample s and the evidence variables
E = {E1, ...,Em}, the weight of sample s is estimated
as:

W (E | s) = P(E1)P(E2)...P(Em) (6)

where P(Ei) is the probability of the evidence variable
Ei for that sample

• The posterior probability for each variable X taking
value xi is estimated by dividing the sum of the weights
Wi(X = xi) for each sample where X = xi by the total
weight for all the samples:

P(X = xi) ∼
∑

i

Wi(X = xi)/
∑

i

Wi (7)
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Most probable explanation

MPE

• The most probable explanation (MPE) or abduction
problem consists in determining the most probable
values for a subset of variables (explanation subset) in
a BN given some evidence

• Two variants: total abduction and partial abduction
• In the total abduction problem, the explanation subset is

the set of all non-instantiated variables
• In partial abduction, the explanation subset is a proper

subset of the non-instantiated variables
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Most probable explanation

Formally

• Consider the set of variables X = {XE ,XR,XH}, where
XE is the subset of instantiated variables; then we can
formalize the MPE problems as follows:
Total abduction: ArgMaxXH ,XR P(XH ,XR | XE).
Partial abduction: ArgMaxXH P(XH | XE).

(L E Sucar: PGM) 41 / 67



Multiconnected
Networks
Variable Elimination

Conditioning

Junction Tree
Algorithm

Approximate
Inference
Loopy Propagation

Stochastic
Simulation

Most probable
explanation

Continuous
variables

Applications
Information
Validation

Reliability Analysis

References

Most probable explanation

Solution

• One way to solve the MPE problem is based on a
modified version of the variable elimination algorithm

• Total abduction, we substitute the summations by
maximizations:

maxXH ,XR P(XH ,XR | XE)

• Partial abduction, we sum over the variables that are
not in the explanation subset and maximize over the
explanation subset:

maxXH

∑
XR

P(XH ,XR | XE)
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Continuous variables

• When dealing with continuos variables, one option is to
discretize them; however, this could result in a loss of
information or in an unnecessary increase in
computational requirements

• Another alternative is to operate directly on the
continuous distributions

• Probabilistic inference techniques have been developed
for some distribution families, in particular for Gaussian
variables
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Continuous variables

Gaussian variables

The basic algorithm makes the following assumptions:
1 The structure of the network is a polytree.
2 All the sources of uncertainty are Gaussians and

uncorrelated.
3 There is a linear relationship between each variable and

its parents:

X = b1U1 + b2U2 + ...+ bnUn + WX

Where Ui are parents of variable X , bi are constant
coefficients and WX represents Gaussian noise with a
zero mean.
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Continuous variables

Inference

• The inference procedure is analogous to belief
propagation in discrete BNs, but instead of propagating
probabilities, it propagates means and standard
deviations

• The posterior probability of a variable can be written as:

P(X | E) = N(µX , σX )

Where µX and σX are the mean and standard deviation
of X given the evidence E , respectively.

• We calculate the mean and standard deviation for each
variable via a propagation algorithm
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Propagation

• Each variable sends to its parent variable i :

µ−i = (1/bi)[µλ −
∑
k 6=i

bkµ
+
k ] (8)

σ−i = (1/b2
i )[σλ −

∑
k 6=i

b2
kσ

+
k ] (9)

• Each variable sends to its child node j :

µ+j =

∑
k 6=j µ

−
k /σk + µπ/σπ]∑

k 6= 1/σ−k + µπ/σπ
(10)

σ+j = [
∑
k 6=j

1/σ−k + 1/σπ]−1 (11)
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Continuous variables

Propagation

• Each variable integrates the messages it receives from
its sons and parents via the following equations:

µπ =
∑

i

biµ
+
i (12)

σπ =
∑

i

b2
i σ

+
i (13)

µλ = σλ
∑

j

µ−j /σ
−
j (14)

σλ = [
∑

j

1/σ−j ]−1 (15)
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Continuous variables

• Finally, each variable obtains its mean and standard
deviation by combining the information from its parent
and children nodes:

µX =
σπµλ + σλµπ
σπ + σλ

(16)

σX =
σπσλ
σπ + σλ

(17)

• Propagation for other distributions is more difficult, as
they do not have the same properties of the Gaussian;
in particular, the product of Gaussians is also a
Gaussian
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Information validation

• Many systems use information to make decisions; if this
information is erroneous it could lead to non-optimal
decisions

• In many applications there are different sources of
information, i.e. sensors, which are not independent;
the information from one source gives us clues about
the other sources

• If we can represent these dependencies between the
different sources, then we can use it to detect possible
errors and avoid erroneous decisions
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Applications Information Validation

Algorithm

• The algorithm starts by building a model of the
dependencies between sources of information
(variables) represented as a Bayesian network

• The validation is done in two phases. In the first phase,
potential faults are detected by comparing the actual
value with the one predicted from the related variables

• In the second phase, the real faults are isolated by
constructing an additional Bayesian network based on
the Markov blanket property
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Applications Information Validation

Fault detection
• Build a probabilistic model relating all the variables in

the application domain
• Example - gas turbine:
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Applications Information Validation

Fault detection

• Suppose it is required to validate the temperature
measurements in the turbine

• By reading the values of the rest of the sensors, and
applying probability propagation, it is possible to
calculate a posterior probability distribution of the
temperature given all the evidence, i.e.,
P(T | Mw ,P,Fg,Pc,Pv ,Ps)

• If the real observed value coincides with a valid value –
that has a high probability, then the sensor is
considered correct; otherwise it is considered faulty
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Applications Information Validation

Fault detection

• If a validation of a single sensor is made using a faulty
sensor, then a faulty validation can be expected

• In the example above, what happens if T is validated
using a faulty Mw sensor?

• By applying this validation procedure, we may only
detect a faulty condition, but we are not able to identify
which is the real faulty sensor – apparent fault

• An isolation stage is needed
• S is the set of variables with apparent faults detected in

the first phase
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Applications Information Validation

Fault isolation

• The isolation phase is based on the Markov Blanket
(MB) property

• The Extended Markov Blanket of a node X (EMB(X ))
as the set of sensors formed by the sensor itself plus its
MB

• For example, EMB(Fg) = {Fg,Pv ,Ps,T}
• Utilizing this property, if a fault exists in one of the

sensors, it will be revealed in all of the sensors in its
EMB. On the contrary, if a fault exists outside a sensors’
EMB, it will not affect the estimation of that sensor

• The EMB is used to create a fault isolation module that
distinguishes the real faults from the apparent faults
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Applications Information Validation

Fault isolation theory

1 If S = φ there are no faults.
2 If S is equal to the EMB of a sensor X , and there is no

other EMB which is a subset of S, then there is a single
real fault in X .

3 If S is equal to the EMB of a sensor X , and there are
one or more EMBs which are subsets of S, then there is
a real fault in X , and possibly, real faults in the sensors
whose EMBs are subsets of S. In this case, there are
possibly multiple indistinguishable real faults.

4 If S is equal to the union of several EMBs and the
combination is unique, then there are multiple
distinguishable real faults in all the sensors whose EMB
are in S.

5 If none of the above cases is satisfied, then there are
multiple faults but they can not be distinguished
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Applications Information Validation

Isolation network

• The isolation network is formed by two levels:
• The root nodes represent the real faults, where there is

one per sensor or variable
• The lower level is formed by one node representing the

apparent fault for each variable. Notice that the arcs are
defined by the EMB of each variable
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Reliability analysis

• In the reliability analysis of a complex system, a
common approach is to divide the system into smaller
elements, units, subsystems, or components

• This subdivision generates a “block diagram” that is
similar to the description of the system in operation

• For each element, the failure rate is specified, and
based on these, the reliability of the complete system is
obtained

• Traditional techniques assume that faults are
independent
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Applications Reliability Analysis

Reliability modeling with BN

• In a block diagram representation there are two basic
structures: serial and parallel components

• A serial structure implies that the two components
should operate correctly for the system to function

• In parallel structures, it is sufficient for one of the
components to operate for the system to function
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Basic structures

• The basic series and parallel block diagrams can be
represented with a Bayesian network

• The structure is the same in both cases, the difference
is the conditional probability matrix
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CPTs

• Series (AND):
X A,B A,¬B ¬A,B ¬A,¬B
Success 1 0 0 0
Failure 0 1 1 1

• Parallel (OR):
X A,B A,¬B ¬A,B ¬A,¬B
Success 1 1 1 0
Failure 0 0 0 1
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Extending the basic models

• The BN representation of the basic serial/parallel cases
can be directly generalized to represent any block
diagram that can be reduced to a set of serial and
parallel combinations of components

• There are some structures that can not be decomposed
to a serial/parallel combination, such as a bridge.
However, it is also possible to model these cases using
BNs
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Example

• Suppose that a system has two components that are
affected by three possible failure sources. Source S1
affects component C1, source S2 affects component C2,
and source S3 affects both components (common
cause)

• In the BN, the CPT for all three non root nodes (C1, C2,
X ) is equivalent to that of a serial component
combination
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