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Probabilistic Graphical Models:
Principles and Applications

Chapter 6: MARKOV RANDOM FIELDS
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Introduction

Introduction

• Certain processes, such as a ferromagnetic material
under a magnetic field, or an image, can be modeled as
a series of states in a chain or a regular grid

• Each state can take different values and is influenced
probabilistically by the states of its neighbors

• These models are known as Markov Random Fields
(MRFs)
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Introduction

Ising Model

• In an Ising model, there are a series of random
variables in a line; each random variable represents a
dipole that could be in two possible states, up (+) or
down (-)

• The state of each dipole depends on an external field
and the state of its neighbor dipoles in the line

• A configuration of a MRF is a particular assignment of
values to each variable in the model

• A MRF is represented as an undirected graphical model
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Introduction

Example
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Introduction

Properties and Central Problem

• An important property of a MRF is that the state of a
variable is independent of all other variables in the
model given its neighbors in the graph

• The central problem in a MRF is to find the
configuration of maximum probability

• The probability of a configuration depends on the
combination of an external influence (e.g., a magnetic
field in the Ising model) and the internal influence of its
neighbors
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Introduction

Physical Analogy

• A MRF can be thought of as a series of rings in poles,
where each ring represents a random variable, and the
height of a ring in a pole corresponds to its state

• Each ring is attached to its neighbors with a spring, this
corresponds to the internal influences; and it is also
attached to the base of its pole with another spring,
representing the external influence

• The relation between the springs’ constants defines the
relative weight between the internal and external
influences

• If the rings are left loose, they will stabilize to a
configuration of minimum energy, that corresponds to
the configuration with maximum probability
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Physical Analogy
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Markov Networks

Random Fields

• A random field (RF) is a collection of S random
variables, F = F1, . . .Fs, indexed by sites

• Random variables can be discrete or continuous
• In a discrete RF, a random variable can take a value fi

from a set of m possible values or labels L = {l1, l2, ...lm}
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Markov Networks

Markov Random Field

• A Markov random field or Markov network (MN) is a
random field that satisfies the locality property: a
variable Fi is independent of all other variables in the
field given its neighbors:

P(Fi | Fc) = P(Fi | Nei(Fi)) (1)

• Graphically, a Markov network (MN) is an undirected
graphical model which consists of a set of random
variables, V, and a set of undirected edges, E
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Markov Networks

Independence Relations

• A subset of variables A is independent of the subset of
variables C given B, if the variables in B separate A and
C in the graph
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Markov Networks

Joint Probability Distribution

• The joint probability of a MN can be expressed as the
product of local functions on subsets of variables

• These subsets should include, at least, all the cliques in
the network

• For the example:
P(q1,q2,q3,q4,q5) =
(1/k)P(q1,q4,q5)P(q1,q2,q5)P(q2,q3,q5)
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Markov Networks

Definition

• A Markov network is a set of random variables,
X = X1,X2, ...,Xn that are indexed by V , such that
G = (V ,E) is an undirected graph, that satisfies the
Markov property

• A variable Xi is independent of all other variables given
its neighbors, Nei(Xi):

P(Xi | X1, ...Xi−1,Xi+1, ...,Xn) = P(Xi | Nei(Xi)) (2)

• The neighbors of a variable are all the variables that are
directly connected to it

(L E Sucar: PGM) 13 / 50
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Markov Networks

Factorization

• Under certain conditions (if the probability distribution is
strictly positive), the the joint probability distribution of a
MRF can be factorized over the cliques of the graph:

P(X) = (1/k)
∏

C∈Cliques(G)

φC(XC) (3)

• A MRF can be categorized as regular or irregular.
When the random variables are in a lattice it is
considered regular; for instance, they could represent
the pixels in an image; if not, they are irregular.
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Regular Markov Random Fields

Neighboring system

• A neighboring system for a regular MRF F is defined as:

V = {Nei(Fi) | ∀i ∈ Fi} (4)

• V satisfies the following properties:
1 A site in the field is not a neighbor to itself.
2 The neighborhood relations are symmetric, that is, if

Fj ∈ Nei(Fi) then Fi ∈ Nei(Fj).
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Regular Markov Random Fields

Regular Grid

• For a regular grid, a neighborhood of order i is defined
as:

Neii(Fi) = {Fj ∈ F | dist(Fi ,Fj) ≤ r} (5)

• The radius, r , is defined for each order.
For example, for a 2D grid:
r = 1 for order one, each interior site has 4 neighbors;
r =
√

2 for order two, each interior site has 8 neighbors;
r = 2 for order three, each interior site has 12 neighbors

(L E Sucar: PGM) 16 / 50
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Regular Markov Random Fields

1st Order Regular Grids

(L E Sucar: PGM) 17 / 50



Introduction

Markov
Networks

Regular
Markov
Random
Fields

Gibbs
Random
Fields

Inference

Parameter
Estimation

Applications
Image smoothing

Improving image
annotation

References

Regular Markov Random Fields

2nd Order Regular Grids
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Regular Markov Random Fields

Parameters

• The parameters of a regular MRF are specified by a set
of local functions

• These functions correspond to joint probability
distributions of subsets of completely connected
variables in the graph

• In the case of a first order MRF, there are subsets of 2
variables; in the case of a second order MRF, there are
subsets of 2, 3 and 4 variables

• In general:
P(F) = (1/k)

∏
i

f (Xi) (6)

• We can think of these local functions as constraints that
will favor certain configurations
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Gibbs Random Fields

GRM

• The joint probability of a MRF can be expressed in a
more convenient way given its equivalence with a Gibbs
Random Field (GRM), according to the
Hammersley–Clifford theorem:

P(F) = (1/z)exp(−U) (7)

• U is known as the energy, given its analogy with
physical energy. So maximizing P(F) is equivalent to
minimizing U

• The energy function can also be written in terms of local
functions:

UF =
∑

i

Ui(Xi) (8)
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Gibbs Random Fields

Energy Function

• Considering a regular MRF of order n, the energy
function can be expressed in terms of functions of
subsets of completely connected variables of different
sizes, 1,2,3, ...:

UF =
∑

i

U1(Fi) +
∑
i,j

U2(Fi ,Fj) +
∑
i,j,k

U3(Fi ,Fj , fk ) + ...

(9)
• Given the Gibbs equivalence, the problem of finding the

configuration of maximum probability for a MRF is
transformed to finding the configuration of minimum
energy
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Gibbs Random Fields

MRF specification

• In summary, to specify a MRF we must define:
• A set of random variables, F, and their possible values,

L.
• The dependency structure, or in the case of a regular

MRF a neighborhood scheme.
• The potentials for each subset of completely connected

nodes (at least the cliques).
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Inference

Most Probable Configuration

• The most common application of MRFs consists in
finding the most probable configuration; that is, the
value for each variable that maximizes the joint
probability - minimizing the energy function

• The set of all possible configurations of a MRF is
usually very large, as it increases exponentially with the
number of variables in F.

• Thus, it is impossible to calculate the energy (potential)
for every configuration, except in the case of very small
fields
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Inference

Stochastic Search

• Usually posed as a stochastic search problem
• Starting from an initial, random assignment of each

variable in the MRF, this configuration is improved via
local operations, until a configuration of minimum
energy is obtained

• After initializing all the variables with a random value,
each variable is changed to an alternative value and its
new energy is estimated

• If the new energy is lower than the previous one, the
value is changed; otherwise, the value may also change
with a certain probability

(L E Sucar: PGM) 24 / 50
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Inference

Stochastic Search Algorithm

FOR i = 1 TO S
F (i) = lk (Initialization)

FOR i = 1 TO N
FOR j = 1 TO S

t = lk+1 (An alternative value for variable F(i))
IF U(t) < U(F (i))

F (i) = t (Change value of F(i) if the
energy is lower)

ELSE
IF random(U(t)− U(F (i))) < T

F (i) = t (With certain probability
change F(i) if the energy is higher)

(L E Sucar: PGM) 25 / 50
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Inference

Variants

• The way in which the optimal configuration is defined,
for which there are two main alternatives: MAP and
MPM:

• Maximum A posteriori Probability or MAP, the optimum
configuration is taken as the configuration at the end of
the iterative process

• Maximum Posterior Marginals or MPM, the most
frequent value for each variable in all the iterations is
taken as the optimum configuration
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Inference

Optimization process

• Iterative Conditional Modes (ICM): it always selects the
configuration of minimum energy.

• Metropolis: with a fixed probability, P, it selects a
configuration with a higher energy.

• Simulated annealing (SA): with a variable probability,
P(T ), it selects a configuration with higher energy;
where T is a parameter known as temperature. The
probability of selecting a value with higher energy is
determined based on the following expression:
P(T ) = e−δU/T
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Parameter Estimation

Definition of a MRF

• The structure of the model –in the case of a regular
MRF the neighborhood system.

• The form of the local probability distribution functions
–for each complete set in the graph.

• The parameters of the local functions.

(L E Sucar: PGM) 28 / 50
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Parameter Estimation

Estimation with labeled data

• If we know the structure and functional form, we only
need to estimate the parameters

• The set of parameters, θ, of a MRF, F , are estimated
from data, f , assuming no noise

• Given f , the maximum likelihood (ML) estimator
maximizes the probability of the data given the
parameters, P(f | θ); thus the optimum parameters are:

θ∗ = ArgMaxθP(f | θ) (10)
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Parameter Estimation

Bayesian approach

• When the prior distribution of the parameters, P(θ), is
known, we can apply a Bayesian approach and
maximize the posterior density obtaining the MAP
estimator:

θ∗ = ArgMaxθP(θ | f ) (11)

• Where:
P(θ | f ) ∼ P(θ)P(f | θ) (12)

(L E Sucar: PGM) 30 / 50
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Parameter Estimation

Approximation
• The main difficulty in the ML estimation for a MRF is

that it requires the evaluation of the normalizing
partition function Z

• One possible approximation is based on the conditional
probabilities of each variable in the field, fi , given its
neighbors, Ni : P(fi | fNi ), and assuming that these are
independent - pseudo-likelihood

• Then the energy function can be written as:

U(f ) =
∑

i

Ui(fi , fNi ) (13)

Assuming a first order regular MRF, only single and
pairs of nodes are considered, so:

Ui(fi ,Ni) = V1(fi) +
∑

j

V2(fi , fj) (14)
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Parameter Estimation

Pseudo-Likelihood

• The pseudo-likelihood (PL) is defined as the simple
product of the conditional likelihoods:

PL(f ) =
∏

i

P(fi | fNi ) =
∏

i

exp−Ui(fi , fNi )∑
fi exp−Ui(fi , fNi )

(15)

• Using the PL approximation, and given a particular
structure and form of the local functions, we can
estimate the parameters of a MRF model based on data

(L E Sucar: PGM) 32 / 50
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Parameter Estimation

Histogram Technique

• Assuming a discrete MRF and given several realizations
(examples), the parameters can be estimated using
histogram techniques

• Assume there are N distinct sets of instances of size k
in the dataset, and that a particular configuration (fi , fNi )
occurs H times, then an estimate of the probability of
this configuration is P(fi , fNi ) = H/N
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Applications Image smoothing

Image smoothing

• Digital images are usually corrupted by high frequency
noise

• For reducing the noise a smoothing process can be
applied to the image

• We can define a MRF associated to a digital image, in
which each pixel corresponds to a random variable

• Considering a first order MRF, each interior variable is
connected to its 4 neighbors

• Additionally, each variable is also connected to an
observation variable that has the value of the
corresponding pixel in the image
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Applications Image smoothing

MRF for image smoothing
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Applications Image smoothing

Restrictions

• A property of natural images is that, in general, they
have certain continuity, that is, neighboring pixels will
tend to have similar values

• Restrictions: (i) neighboring pixels to have similar
values, by punishing (higher energy) configurations in
which neighbors have different values, (ii) have a value
similar to the one in the original image; so we also
punish configurations in which the variables have
different values to their corresponding observations

• The solution will be a compromise between these two
types of restrictions
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Applications Image smoothing

Potential functions

• The energy function can be expressed as the sum of
two types of potentials: one associated to pairs of
neighbors, Uc(fi , fj); and the other for each variable and
its corresponding observation, Uo(fi ,gi)

UF =
∑
i,j

Uc(Fi ,Fj) + λ
∑

i

Uo(Fi ,Gi) (16)

• Where λ is a parameter which controls which aspect is
given more importance, the observations (λ > 1) or the
neighbors (λ < 1); and Gi is the observation variable
associated to Fi
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Applications Image smoothing

Potentials

• A reasonable function is the quadratic difference.
• The neighbors potential is:

Uc(fi , fj) = (fi − fj)2 (17)

• The observation potential is:

Uo(fi ,gi) = (fi − gi)
2 (18)

• Using these potentials and applying the stochastic
optimization algorithm, a smoothed image is obtained
as the final configuration of F

(L E Sucar: PGM) 38 / 50
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Applications Image smoothing

Image smoothing
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Applications Improving image annotation

Automatic Image Annotation

• Automatic image annotation is the task of automatically
assigning annotations or labels to images or segments
of images, based on their local features

• When labeling a segmented image, we can incorporate
additional information to improve the annotation of each
region of the image

• The labels of each region of an image are usually not
independent; for instance in an image of animals in the
jungle, we will expect to find a sky region above the
animal, and trees or plants below or near the animal

• Spatial relations between the different regions in the
image can help to improve the annotation
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Applications Improving image annotation

MRFs for improving annotations

• Using a MRF we can combine the information provided
by the visual features for each region (external
potential) and the information from the spatial relations
with other regions in the image (internal potential)

• By combining both aspects in the potential function, and
applying the optimization process, we can obtain a
configuration of labels that best describe the image
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Applications Improving image annotation

Procedure

The procedure is basically the following:
1 An image is automatically segmented (using

Normalized cuts).
2 The obtained segments are assigned a list of labels and

their corresponding probabilities based on their visual
features using a classifier.

3 Concurrently, the spatial relations among the same
regions are computed.

4 The MRF is applied, combining the original labels and
the spatial relations, resulting in a new labeling for the
regions by applying simulated annealing.

5 Adjacent regions with the same label are joined.
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Procedure - block diagram
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Applications Improving image annotation

Energy function

• The energy function to be minimized combines the
information provided by the classifiers (labels’
probabilities) with the spatial relations (relations’
probabilities)

• Spatial relations are divided in three groups: topological
relations, horizontal relations and vertical relations -
contains four terms, one for each type of spatial relation
and one for the initial labels:

Up(f ) = α1VT (f ) + α2VH(f ) + α3VV (f ) + λ
∑

o

Vo(f ) (19)
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Applications Improving image annotation

Parameters

• These potentials can be estimated from a set of labeled
training images

• The potential for a certain type of spatial relation
between two regions of classes A and B is inversely
proportional to the probability (frequency) of that
relation occurring in the training set
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Applications Improving image annotation

Application

• By applying this approach, a significant improvement
can be obtained over the initial labeling of an image

• In some cases, by using the information provided by this
new set of labels, we can also improve the initial image
segmentation as illustrated
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Example - improving segmentation
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