Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

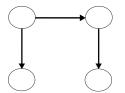
Hidden Markov Models Basic Questions Learning Extensions

Applications

Probabilistic Graphical Models: Principles and Applications

Chapter 5: HIDDEN MARKOV MODELS

L. Enrique Sucar, INAOE



Outline

Introductior

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

References

1 Introduction

Markov Chains
 Basic Questions
 Parameter Estimation
 Convergence

 Hidden Markov Models Basic Questions Learning Extensions

Introduction

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

- Markov Chains are another class of PGMs that represent dynamic processes
- For instance, consider that we are modeling how the weather in a particular place changes over time
- A simple weather model as a Markov chain in which there is a state variable per day, with 3 possible values: *sunny, cloudy, raining*; these variables are linked in a *chain*

Markov Chain

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- HIDDEN Markov Models Basic Questions Learning Extensions

Applications

References

This implies what is known as the *Markov property*, the state of the weather for the next day, S_{t+1} , is independent of all previous days given the present weather, S_t , i.e., $P(S_{t+1} | S_t, S_{t-1}, ...) = P(S_{t+1} | S_t)$

Hidden Markov Models

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

- The previous model assumes that we can measure the weather with precision each day, that is, the state is *observable*
- In many applications we cannot observe the state of the process directly, so we have what is called a *Hidden Markov Model*, where the state is hidden
- In addition to the probability of the next state given the current state, there is another parameter which models the uncertainty about the state, represented as the probability of the *observation* given the state, P(O_t | S_t)

Definition

Introduction

Markov Chains

Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Question: Learning Extensions

Applications

References

• A Markov chain (MC) is a *state machine* that has a discrete number of states, *q*₁, *q*₂, ..., *q*_n, and the transitions between states are non-deterministic

• Formally, a Markov chain is defined by:

Set of states: $Q = \{q_1, q_2, ..., q_n\}$ Vector of prior probabilities: $\Pi = \{\pi_1, \pi_2, ..., \pi_n\}$, where $\pi_i = P(S_0 = q_i)$ Matrix of transition probabilities: $A = \{a_{ij}\}$,

$$f = [1..n], j = [1..n],$$
 where
 $a_{ij} = P(S_t = q_j \mid S_{t-1} = q_i)$

• In a compact way, a MC is represented as $\lambda = \{A, \Pi\}$

Properties

Introduction

Markov Chains

Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

References

1 Probability axioms: $\sum_{i} \pi_{i} = 1$ and $\sum_{j} a_{ij} = 1$ **2** Markov property: *P*(*S*_{*t*} = *q*_{*j*} | *S*_{*t*−1} = *q*_{*i*}, *S*_{*t*−2} = *q*_{*k*}, ...) = *P*(*S*_{*t*} = *q*_{*i*} | *S*_{*t*−1} = *q*_{*i*})

Example - simple weather model

Introduction

Markov Chains

Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Question Learning Extensions

Applications

References

sunny (q1)	cloudy (q2)	raining (q3)
0.2	0.5	0.3

Table: Prior probabilities.

	sunny	cloudy	raining
sunny	0.8	0.1	0.1
cloudy	0.2	0.6	0.2
raining	0.3	0.3	0.4

Table: Transition probabilities.

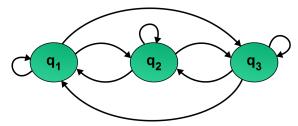
State Transition Diagram

Introduction

Markov Chains

- Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications

 This diagram is a directed graph, where each node is a state and the arcs represent possible transitions between states



Basic Questions

Basic Questions

Given a Markov chain model, there are three basic questions that we can ask:

- What is the probability of a certain state sequence?
- What is the probability that the chain remains in a certain state for a period of time?
- What is the expected time that the chain will remain in a certain state?

Probability of a state sequence

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

• The probability of a sequence of states given the model is basically the product of the transition probabilities of the sequence of states:

$$P(q_i, q_j, q_k, ...) = a_{0i} a_{ij} a_{jk}$$
 (1)

 For example, in the weather model, we might want to know the probability of the following sequence of states:
 Q = sunny, sunny, rainy, rainy, sunny, cloudy, sunny.

Probability of remaining in a state

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications

 The probability of staying *d* time steps in a certain state, *q_i*, is equivalent to the probability of a sequence in this state for *d* - 1 time steps and then transiting to a different state.

$$P(d_i) = a_{ii}^{d-1}(1 - a_{ii})$$
(2)

• Considering the weather model, what is the probability of 3 cloudy days?

Average duration

- Basic Questions

 The average duration of a state sequence in a certain state is the expected value of the number of stages in that state, that is: $E(D) = \sum_i d_i P(d_i)$

$$E(d_i) = \sum_i d_i a_{ii}^{d-1} (1 - a_{ii})$$
(3)

Which can be written in a compact form as:

$$E(d_i) = 1/(1 - a_{ii})$$
 (4)

 What is the expected number of days that the weather will remain cloudy?

Parameter Estimation

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications References • The parameters can be estimated simply by counting the number of times that the sequence is in a certain state, *i*; and the number of times there is a transition from a state *i* to a state *j*: Initial probabilities:

$$\pi_i = \gamma_{0i} / N \tag{5}$$

Transition probabilities:

$$a_{ij} = \gamma_{ij}/\gamma_i \tag{6}$$

 γ_{0i} is the number of times that the state *i* is the initial state in a sequence, γ_i is the number of times that we observe state *i*, and γ_{ij} is the number of times that we observe a transition from state *i* to state *j*

Weather Example - data

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

References

• Consider that for the weather example we have the following 4 observation sequences:

 $q_2, q_2, q_3, q_3, q_3, q_3, q_1$

 $q_1, q_3, q_2, q_3, q_3, q_3, q_3$

 q_3, q_3, q_2, q_2

 $q_2, q_1, q_2, q_2, q_1, q_3, q_1$

Weather Example - parameters

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

References

sunny	cloudy	raining
0.25	0.5	0.25

Table: Calculated prior probabilities for the weather example.

	sunny	cloudy	raining
sunny	0	0.33	0.67
cloudy	0.285	0.43	0.285
raining	0.18	0.18	0.64

Table: Calculated transition probabilities for the weather example.

Convergence

Convergence

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

- If a sequence transits from one state to another a large number of times, *M*, what is the probability in the limit (as *M* → ∞) of each state, *q_i*?
- Given an initial probability vector, Π, and transition matrix, *A*, the probability of each state,
 P = {*p*₁, *p*₂, ..., *p_n*} after *M* iterations is:

$$P = \pi A^M \tag{7}$$

• The solution is given by the Perron-Frobenius theorem

Perron-Frobenius theorem

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

• Conditions:

- 1 Irreducibility: from every state *i* there is a probability $a_{ij} > 0$ of transiting to any state *j*.
- Aperiodicity: the chain does not form cycles (a subset of states in which the chain remains once it transits to one of these state).
- Then as *M* → ∞, the chain converges to an invariant distribution *P*, such that *P* × *A* = *P*
- The rate of convergence is determined by the second *eigen-value* of matrix *A*

Example

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

- Consider a MC with three states and the following transition probability matrix:
 - $A = \begin{array}{cccc} 0.9 & 0.075 & 0.025 \\ 0.15 & 0.8 & 0.05 \\ 0.25 & 0.25 & 0.5 \end{array}$
- It can be shown that in this case the steady state probabilities converge to P = {0.625, 0.3125, 0.0625}
 - An interesting application of this convergence property of Markov chains is for ranking web pages

HMM

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

- Basic Questions Learning Extensions
- Applications
- References

- A Hidden Markov model (HMM) is a Markov chain where the states are not directly observable.
- A HMM is that it is a double stochastic process: (i) a hidden stochastic process that we cannot directly observe, (ii) and a second stochastic process that produces the sequence of observations given the first process.
- For instance, consider that we have two unfair or "biased" coins, *M*₁ and *M*₂. *M*₁ has a higher probability of *heads*, while *M*₂ has a higher probability of *tails*. Someone sequentially flips these two coins, however we do not know which one. We can only observe the outcome, *heads* or *tails*

Example - two unfair coins

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

Basic Questions Learning Extensions

Applications

Aside from the prior and transition probabilities for the states (as with a MC), in a HMM we need to specify the *observation* probabilities

$$\Pi = \frac{M_1 \quad M_2}{0.5 \quad 0.5} \qquad \frac{\begin{array}{c} M_1 = & \\ M_1 & M_2 \end{array}}{M_1 \quad 0.5 \quad 0.5 \quad 0.5} \quad \frac{\begin{array}{c} B = \\ M_1 & M_2 \end{array}}{H \quad 0.8 \quad 0.2 \\ T \quad 0.2 \quad 0.8 \end{array}}$$

л

Table: The prior probabilities (Π), transition probabilities (A) and observation probabilities (B) for the unfair coins example.

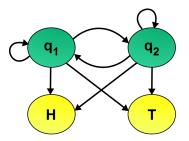
Coins example - state diagram

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

- Basic Questions Learning Extensions
- Applications
- References



Definition

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

Basic Questions Learning Extensions

Applications

References

Set of states: $Q = \{q_1, q_2, ..., q_n\}$ Set of observations: $O = \{o_1, o_2, \dots, o_m\}$ Vector of prior probabilities: $\Pi = \{\pi_1, \pi_2, ..., \pi_n\}$, where $\pi_i = P(S_0 = q_i)$ Matrix of transition probabilities: $A = \{a_{ii}\},\$ i = [1..n], j = [1..n], where $a_{ii} = P(S_t = q_i \mid S_{t-1} = q_i)$ Matrix of observation probabilities: $B = \{b_{ii}\},\$ i = [1..n], j = [1..m], where $b_{ik} = P(O_t = o_k \mid S_t = a_i)$

Compactly, a HMM is represented as $\lambda = \{A, B, \Pi\}$

Properties

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

Basic Questions Learning Extensions

Applications

References

Markov property:
$$P(S_t = q_j | S_{t-1} = q_i, S_{t-2} = q_k, ...) = P(S_t = q_j | S_{t-1} = q_i)$$

Stationary process: $P(S_{t-1} = q_j | S_{t-2} = q_i) = P(S_t = q_j | S_{t-1} = q_i)$
and
 $P(O_{t-1} = o_k | S_{t-1} = q_j) = P(O_t = o_k | S_t = q_i), \forall (t)$

Independence of observations: $P(O_t = o_k \mid S_t = q_i, S_{t-1} = q_j, ...) = P(S_O = o_k \mid S_t = q_i)$

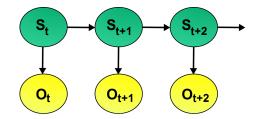
HMM: Graphical Model

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models

- Basic Questions Learning Extensions
- Applications



Basic Questions

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications

- **1** *Evaluation*: given a model, estimate the probability of a sequence of observations.
- Optimal Sequence: given a model and a particular observation sequence, estimate the most probable state sequence that produced the observations.
- Observations, adjust the parameters of the model.

Evaluation - Direct Method

- Evaluation consists in determining the probability of an observation sequence, *O* = {*o*₁, *o*₂, *o*₃, ...}, given a model, *λ*, that is, estimating *P*(*O* | *λ*)
 - A sequence of observations, *O* = {*o*₁, *o*₂, *o*₃, ... *o*_T}, can be generated by different state sequences
 - To calculate the probability of an observation sequence, we can estimate it for a certain state sequence, and then add the probabilities for all the possible state sequences:

$$P(O \mid \lambda) = \sum_{i} P(O, Q_i \mid \lambda)$$
(8)

• Where:

 $P(O, Q_i \mid \lambda) = \pi_1 b_1(o_1) a_{12} b_2(o_2) \dots a_{(T-1)T} b_T(o_T)$ (9)

duction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications References

Direct Method

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

References

• Thus, the probability of *O* is given by a summation over all the possible state sequences, *Q*:

$$P(O \mid \lambda) = \sum_{Q} \pi_1 b_1(o_1) a_{12} b_2(o_2) \dots a_{(T-1)T} b_T(o_T)$$
(10)

- For a model with *N* states and an observation length of *T*, there are N^T possible state sequences. Each term in the summation requires 2T operations. As a result, the evaluation requires a number of operations in the order of $2T \times N^T$
- A more efficient method is required!

Evaluation - iterative method

- Models Basic Questions
- References

- The basic idea of the iterative method, also known as Forward, is to estimate the probabilities of the states/observations per time step
- Calculate the probability of a partial sequence of observations until time t, and based on this partial result, calculate it for time t + 1, and so on ...
- Until the last stage is reached and the probability of the complete sequence is obtained.

Iterative method

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

• Define an auxiliary variable called *forward*:

$$\alpha_t(i) = P(o_1, o_2, ..., o_t, S_t = q_i \mid \lambda)$$
(11)

- The iterative algorithm consists of three main parts:
 - Initialization the α variables for all states at the initial time are obtained:

 $\alpha_1(i) = P(O_1, S_1 = q_i) = \pi_i b_i(O_1)$

- Induction calculate $\alpha_{t+1}(i)$ in terms of $\alpha_t(i)$: $\alpha_t(j) = [\sum_i \alpha_{t-1}(i)a_{ij}]b_j(O_t)$
- Termination $P(O \mid \lambda)$ is obtained by adding all the α_T : $P(O) = \sum_i \alpha_T(i)$

Complexity

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

- Each iteration requires *N* multiplications and *N* additions (approx.), so for the *T* iterations, the number of operations is in the order of $N^2 \times T$
- The time complexity is reduced from exponential in *T* for the direct method to linear in *T* and quadratic in *N* for the iterative method

State Estimation

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications References

- Finding the most probable sequence of states for an observation sequence, *O* = {*o*₁, *o*₂, *o*₃, ...}, can be interpreted in two ways: (i) obtaining the most probable state, *S_t* at each time step *t*, (ii) obtaining the most probable sequence of states, *s*₀, *s*₁, ...*s_T*
- First we solve the problem of finding the most probable or *optimum* state for a certain time *t*, and then the problem of finding the *optimum* sequence

Auxiliary variables

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

• The *backward* variable is analogous to the forward one, but in this case we start from the end of the sequence, that is:

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, ..., o_T, S_t = q_i \mid \lambda)$$
 (12)

 In a similar way to α, β_t(i) can be calculated iteratively but now backwards:

$$\beta_t(i) = \sum_j \beta_{t+1}(j) a_{ij} b_j(o_t) \tag{13}$$

The β variables for *T* are defined as $\beta_T(j) = 1$

So P(O | λ) can be obtained in terms of β or a combination of α and β

Most probable state

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- References

γ, that is the conditional probability of being in a certain state *q_i* given the observation sequence:

 $\gamma_t(i) = P(s_t = q_i \mid O, \lambda) = P(s_t = q_i, O \mid \lambda) / P(O)$ (14)

• Which can be written in terms of α and β as:

$$\gamma_t(i) = \alpha_t(i)\beta_t(i) / \sum_i \alpha_t(i)\beta_t(i)$$
(15)

 This variable, γ, provides the answer to the first subproblem, the most probable state (MPS) at a time *t*; we just need to find for which state it has the maximum value:

$$MPS(t) = ArgMax_i\gamma_t(i)$$
(16)

Most probable sequence

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

- The most probable state sequence *Q* given the observation sequence *O*, such that we want to maximize *P*(*Q* | *O*, λ)
- By Bayes rule: P(Q | O, λ) = P(Q, O | λ)/P(O). Given that P(O) does not depend on Q, this is equivalent to maximizing P(Q, O | λ)
- The method for obtaining the optimum state sequence is known as the *Viterbi* algorithm

Viterbi Algorithm

- Introduction
- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- References

 δ gives the maximum value of the probability of a subsequence of states and observations until time *t*, being at state *q_i* at time *t*; that is:

$$\delta_t(i) = MAX[P(s_1, s_2, ..., s_t = q_i, o_1, o_2, ..., o_t \mid \lambda)]$$
(17)

• Which can also be obtained in an iterative way:

1

$$\delta_{t+1}(i) = [MAX\delta_t(i)a_{ij}]b_j(o_{t+1})$$
(18)

• The Viterbi algorithm requires four phases: initialization, recursion, termination and backtracking. It requires an additional variable, $\psi_t(i)$, that stores for each state *i* at each time step *t* the previous state that gave the maximum probability - used to reconstruct the sequence by backtracking

Algorithm

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications

FOR i = 1 to N (Initialization)

- $\delta_1(i) = \pi_i b_i(O_1)$
- $\psi_1(i) = 0$

FOR t = 2 to T (recursion) FOR j = 1 to N

- $\delta_t(j) = MAX_i[\delta_{t-1}(i)a_{ij}]b_j(O_t)$
- $\psi_t(j) = ARGMAX_i[\delta_{t-1}(i)a_{ij}]$
- $P^* = MAX_i[\delta_T(i)]$ (Termination) $q^*_T = ARGMAX_i[\delta_T(i)]$
 - FOR t = T to 2 (Backtracking)
 - $q_{t-1}^* = \psi_t(q_t^*)$

Learning

Parameter Learning

- Models Learning

- This method assumes that the structure of the model is known: the number of states and observations is previously defined; therefore it only estimates the parameters
- The Baum-Welch algorithm determines the parameters of a HMM, $\lambda = A, B, \Pi$, given a number of observation sequences, $\mathbf{O} = O_1, O_2, \dots O_K$
- It maximizes the probability of the model given the observations: $P(\mathbf{O} \mid \lambda)$

Auxiliary Variables

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

 ξ, the probability of a transition from a state *i* at time *t* to a state *j* at time *t* + 1 given an observation sequence *O*:

$$\xi_t(i,j) = P(s_t = q_i, s_{t+1} = q_j \mid O, \lambda)$$
(19)

$$\xi_t(i,j) = P(s_t = q_i, s_{t+1} = q_j, O \mid \lambda) / P(O)$$
 (20)

• In terms of α and β :

$$\xi_t(i,j) = \alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)/P(O)$$
(21)

- γ can also be written in terms of ξ : $\gamma_t(i) = \sum_j \xi_t(i,j)$
- By adding γ_t(i) for all time steps, Σ_t γ_t(i), we obtain an estimate of the number of times that the chain is in state *i*; and by accumulating ξ_t(i, j) over t, Σ_t ξ_t(i, j), we estimate the number of transitions from state *i* to state *j*

Baum-Welch Algorithm

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

 Estimate the prior probabilities – the number of times being in state *i* at time *t*.

$$\pi_i = \gamma_1(i)$$

Estimate the transition probabilities – the number of transitions from state *i* to *j* between the number of times in state *i*.

 $a_{ij} = \sum_t \xi_t(i,j) / \sum_t \gamma_t(i)$

Estimate the observation probabilities – the number of times being in state *j* and observing *k* between the number of times in state *j*.

$$b_{jk} = \sum_{t,O=k} \gamma_t(i) / \sum_t \gamma_t(i)$$

Expectation-Maximization

- Models Learning

- Notice that the calculation of γ and ξ variables is done in terms of α and β , which require the parameters of the HMM, Π, A, B. So we have encountered a "chicken and egg" problem!
- The solution to this problem is based on the EM (for expectation-maximization) principle
- The idea is to start with some initial parameters for the model (E-step), $\lambda = \{A, B, \Pi\}$, which can be initialized randomly or based on some domain knowledge
- Then, via the Baum-Welch algorithm, these parameters are re-estimated (M-step)
- This cycle is repeated until convergence

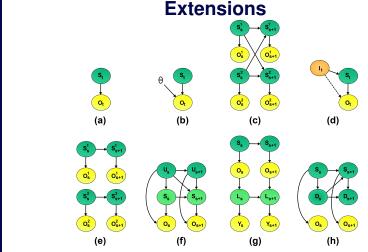
Extensions to the basic HMM model

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Question: Learning Extensions

Applications

- Several extensions for the basic HMM have been proposed
- · Some of these are illustrated in the next slide



(a) Basic model. (b) Parametric HMMs. (c) Coupled HMMs. (d) Input-Output HMMs. (e) Parallel HMMs. (f) Hierarchical HMMs. (g) Mixed-state dynamic Bayesian networks. (h) Hidden semi-Markov models

Extensions

Applications

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- HIDDEN Markov Models Basic Question Learning Extensions

Applications

- Markov chains for ordering web pages with the PageRank algorithm
- Application of HMMs in gesture recognition

WWW as a HMM

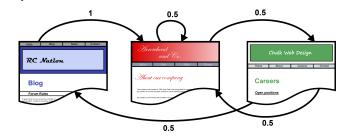
Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Questions Learning Extensions

Applications

- We can think of the World Wide Web (WWW) as a very large Markov chain, such that each web page is a state and the hyperlinks between web pages correspond to state transitions
- Each outgoing link can be selected with equal probability; the transition probability from w_i to any of the web pages with which it has hyperlinks, w_j , is $A_{ii} = 1/m$



PageRank

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

- Given the transition probability matrix of the WWW, we can obtain the convergence probabilities for each state (web page) according to the Perron-Frobenius theorem
- The convergence probability of a certain web page can be thought to be equivalent to the probability of a person, who is navigating the WWW, visiting this web page.
- Based on the previous ideas, L. Page et al. developed the *PageRank* algorithm which is the basis of how web pages are ordered when we make a search in *Google*

Gestures

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

References

Gestures are essential for human-human communication, so they are also important for human-computer interaction. For example, we can use gestures to command a service robot

Gesture Recognition

ntroduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions
- Applications
- References

- For recognizing gestures, a powerful option is a hidden Markov model
- Before we can apply HMMs to model and recognize gestures, the images in the video sequence need to be processed and a set of features extracted from them; these will constitute the observations for the HMM
- To recognize N different gestures, we need to train N HMMs, one for each gesture using the Baum-Welch algorithm
- For recognition, the features are extracted from the video sequence. The probability of each model given the observation sequence, P(O | λ_i), are obtained using the Forward algorithm. The model with the highest probability, λ^{*}_k, is selected as the recognized gesture

Applications

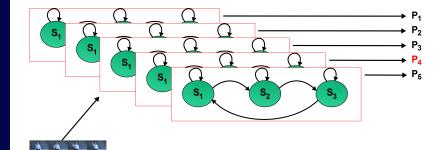
Gesture Recognition

Introduction

Markov Chains Basic Questions Parameter Estimation Convergence

Hidden Markov Models Basic Question Learning Extensions

Applications



Book

Introduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

References

Sucar, L. E, *Probabilistic Graphical Models*, Springer 2015 – Chapter 5

Additional Reading

ntroduction

- Markov Chains Basic Questions Parameter Estimation Convergence
- Hidden Markov Models Basic Questions Learning Extensions

Applications

References

- Aviles, H., Sucar, L.E., Mendoza, C.E., Pineda, L.A.: A Comparison of Dynamic Naive Bayesian Classifiers and HMMs for Gesture Recognition. JART 9(1) (2011)
- Kanungo, T.: Hidden Markov Models Software. http://www.kanungo.com/.
- Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web, Stanford Digital Libraries Working Paper, 1998.
- Rabiner, L.E.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: Waibel A., Lee, K. (eds.) Readings in speech recognition, Morgan Kaufmann, 267-296 (1990)

Rabiner, L., Juang, B.H.: Fundamentals on Speech Recognition. Prentice-Hall, New Jersey (1993)