Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphisr

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

Probabilistic Graphical Models: Principles and Applications

Chapter 3: GRAPH THEORY

L. Enrique Sucar, INAOE

Outline

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- 2 Types of Graphs
- **3** Trajectories and Circuits
- 4 Graph Isomorphism
- 5 Trees
- 6 Cliques
- **7** Perfect Ordering
- 8 Ordering and Triangulation Algorithms
- **9** References

Graphs

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- A *graph* provides a compact way to represent binary relations between a set of objects
- Objects are represented as circles or ovals, and relations as lines or arrows
- There are two basic types of graphs: *undirected graphs* and *directed graphs*

Directed Graphs

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- A directed graph or digraph is an ordered pair,
 G = (V, E), where V is a set of vertices or nodes and E is a set of arcs that represent a binary relation on V
- Directed graphs represent anti-symmetric relations between objects, for instance the "parent" relation

Undirected Graphs

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- An undirected graph is an ordered pair, G = (V, E), where V is a set of vertices or nodes and E is a set of edges that represent symmetric binary relations:
 (V_j, V_k) ∈ E → (V_k, V_j) ∈ E
- Undirected graphs represent symmetric relations between objects, for example, the "brother" relation

More Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphisn
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- If there is an edge *E_i*(*V_j*, *V_k*) between nodes *j* and *k*, then *V_j* is adjacent to *V_k*
- The *degree* of a node is the number of edges that are incident in that node
- Two edges associated to the same pair of vertices are said to be *parallel edges* (a)

More Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- An edge that has its two endpoints in the same vertex is a *cycle* (b)
- A vertex that is not an endpoint to any edge is an *isolated vertex* –it has degree 0 (c)
- In a directed graph, the number of arcs pointing to a node is its *in degree*; and the number of edges pointing away from a node is its *out degree*

Types of Graphs (I)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphisr

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

Chain graph: a hybrid graph that has directed and undirected edges (a).

Simple graph: a graph that does not include cycles and parallel arcs (b).

Multigraph: a graph with several components (subgraphs), such that each component has no edges to the other components, i.e., they are disconnected (c).

Complete graph: a graph that has an edge between each pair of vertices (d).

Bipartite graph: a graph in which the vertices are divided in two subsets, G_1 , G_2 , such that all edges connect a vertex in G_1 with a vertex in G_2 ; that is, there are no edges between nodes in each subset (e).

Weighted graph: a graph that has weights associated to its edges and/or vertices (f).

Types of Graphs (II)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphis

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Trajectories

Definitions

Types of Graphs

Trajectories and Circuits

- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- A *trajectory* is a sequence of edges, $E_1, E_2, ..., E_n$ such that the final vertex of each edge coincides with the initial vertex of the next edge in the sequence
- A *simple* trajectory (a) does not include the same edge two o more times; an *elemental* trajectory (b) is not incident on the same vertex more than once

Circuits

- A *circuit* is a trajectory such that the final vertex coincides with the initial one
- A simple circuit does not include the same edge two or more times; an *elemental* circuit is not incident on the same vertex more than once (except the initial/final vertex)

Definitions

Types of Graphs

Trajectories and Circuits

- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

Directed Acyclic Graphs

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

 A Directed Acyclic Graph (DAG) is a directed graph that has no directed circuits (a directed circuit is a circuit in which all edges in the sequence follow the directions of the arrows)

Some Problems on Graphs

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

- Finding a trajectory that includes all edges in a graph only once (Euler trajectory).
- Finding a circuit that includes all edges in a graph only once (Euler circuit).
- Finding a trajectory that includes all vertices in a graph only once (Hamiltonian trajectory).
- Finding a circuit that includes all vertices in a graph only once (Hamiltonian circuit).
- Finding a Hamiltonian circuit in a weighted graph with minimum cost (Traveling salesman problem)¹.

¹ In this case the nodes represent cities and the edges roads with an associated distance or time, so the solution will provide a traveling salesman with the "best" (minimum distance or time) route to cover all the cities.

Isomorphism (I)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

- Two graphs are isomorphic if there is a one to one correspondence between their vertices and edges, so that the incidences are maintained
- Types:
 - **1** Graph isomorphism. Graphs G_1 and G_2 are isomorphic.
 - 2 Subgraph isomorphism. Graph G_1 is isomorphic to a subgraph of G_2 (or vice versa).
 - **3** Double subgraph isomorphism. A subgraph of G_1 is isomorphic to a subgraph of G_2 .

Isomorphism (II)

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

• Determining if two graphs are isomorphic (type 1) is an NP problem; while the subgraph and double subgraph isomorphism problems (type 2 and 3) are NP-complete

Trees

Undirected trees

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

- An undirected tree is a connected graph that does not have simple circuits
- There are two classes of vertices or nodes in an undirected tree: (i) leaf or terminal nodes, with degree one; (ii) internal nodes, with degree greater than one

Frees

Properties

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism

Trees

- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- There is a simple trajectory between each pair of vertices.
- The number of vertices, | V |, is equal to the number of edges, | E | plus one: | V |=| E | +1.
- A tree with two or more vertices has at least two leaf nodes.

Trees

Directed trees

- A directed tree is a connected directed graph such that there is only a single directed trajectory between each pair of nodes
- A rooted tree has a single node with an in degree of zero (the root node) and the rest have in degree of one
- A polytree might have more than one node with in degree zero (roots), and certain nodes (zero or more) with in degree greater than one

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism

Trees

- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

Trees

Terminology (I)

Root: a node with in degree equal to zero. Leaf: a node with out degree equal to zero. Internal node: a node with out degree greater than zero. Parent / Child: if there is a directed arc from A to B, A is parent of B and B is a child of A. Brothers: two or more nodes that have the same parent. Ascendants /Descendants: if there is a directed trajectory from A to B, A is an ascendant of B and B is a descendant of A. Subtree with root A: a subtree with A as its root. Subtree of A: a subtree with a child of A as its root. K-ary Tree: a tree in which each internal node has at most K children. It is a regular tree if each internal

Binary Tree: a tree in which each internal node has at most two children.

node has K children.

Trees

Terminology (II)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphisr

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Complete set and subsets

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees

Cliques

- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- A *complete graph* is a graph, *G_c*, in which each pair of nodes is adjacent; that is, there is an edge between each pair of nodes
- A *complete set*, *W_c* is a subset of *G* that induces a complete subgraph of *G*. It is a subset of vertices of *G* so that each pair of nodes in this subgraph is adjacent

Cliques

Cliques

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

• A *clique*, *C*, is a subset of graph *G* such that it is a complete set that is maximal; that is, there is no other complete set in *G* that contains *C*

Ordering

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques

Perfect Ordering

- Ordering and Triangulation Algorithms
- References

- An ordering of the nodes in a graph consists in assigning an integer to each vertex
- Given a graph G = (V, E), with *n* vertices, then
 α = [V₁, V₂, ..., V_n] is an ordering of the graph; V_i is before V_i according to this ordering, if i < j
- An ordering α of a graph G = (V, E) is a perfect ordering if all the adjacent vertices of each vertex V_i that are before V_i, according to this ordering, are completely connected

Perfect Ordering

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphisi

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Clique Ordering

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques

Perfect Ordering

- Ordering and Triangulation Algorithms
- References

- In an analogous way as an ordering of the nodes, we can define an ordering of the cliques,
 β = [C₁, C₂, ..., C₀]
- An ordering β of the cliques has the *running intersection* property, if all the common nodes of each clique C_i with previous cliques according to this order are contained in a clique C_i; C_i is the parent of C_i
- It is possible that a clique has more than one parent

Triangulated graphs

- A graph *G* is *triangulated* if every simple circuit of length greater than three in *G* has a chord
 - A chord is an edge that connects two of the vertices in the circuit and that is not part of that circuit
 - A condition for achieving a perfect ordering of the vertices, and having an ordering of the cliques that satisfies the running intersection property, is that the graph is triangulated

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques

Perfect Ordering

- Ordering and Triangulation Algorithms
- References

Maximum Cardinality Search

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms

- Given that a graph is triangulated, the following algorithm guarantees a perfect ordering:
- Select any vertex from V and assign it number 1.
- **2** WHILE Not all vertices in *G* have been numbered:
 - From all the non-labeled vertices, select the one with higher number of adjacent labeled vertices and assign it the next number.
 - 2 Break ties arbitrarily.

Example - Maximum Cardinality Search

- Definitions
- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphisr
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

Graph filling

Definitions

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphism
- Trees
- Cliques
- Perfect Ordering

Ordering and Triangulation Algorithms

- The filling of a graph consists of adding arcs to an original graph *G* to make it triangulated
- The following algorithm makes the graph triangulated:
- Order the vertices V with maximum cardinality search:
 V₁, V₂, ..., V_n.
- POR i = n TO i = 1
 - **1** For node V_i , select all its adjacent nodes V_j such that j > i. Call this set of nodes A_i .
 - 2 Let V_m be the node with largest number in A_i
 - 3 Add an arc from V_i to V_k if k > i, k < m and $V_k \notin A_i$.

Example - Graph Filling

The resulting graph has one additional arc: 2 - 4

Types of Graphs

Trajectories and Circuits

Graph Isomorphis

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Additional Reading

- Types of Graphs
- Trajectories and Circuits
- Graph Isomorphis
- Trees
- Cliques
- Perfect Ordering
- Ordering and Triangulation Algorithms
- References

- Aho, A.V., Hopcroft, J.E, Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)
 - Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Netherlands (1994)
 - Gould, R.: Graph Theory. Benjamin/Cummings, Menlo Park (1988)
 - Gross, J.L, Yellen, J.: Graph Theory and its Applications. CRC Press, Boca Raton (2005)
- Neapolitan, R.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. Wiley, New York (1990)