Probabilistic Graphical Models: Principles and Applications

Chapter 3: GRAPH THEORY

L. Enrique Sucar, INAOE

Outline

Definitions
Types of
Graphs
Trajectories
and Circuits
(4) Graph Isomorphism
(5) Trees
(1) Definitions
(2) Types of Graphs
(3) Trajectories and Circuits
(6) Cliques
(7) Perfect Ordering

8 Ordering and Triangulation Algorithms
(9) References

Graphs

- A graph provides a compact way to represent binary relations between a set of objects
- Objects are represented as circles or ovals, and relations as lines or arrows
- There are two basic types of graphs: undirected graphs and directed graphs

(a)

(b)

Directed Graphs

- A directed graph or digraph is an ordered pair, $G=(V, E)$, where V is a set of vertices or nodes and E is a set of arcs that represent a binary relation on V
- Directed graphs represent anti-symmetric relations between objects, for instance the "parent" relation

Undirected Graphs

- An undirected graph is an ordered pair, $G=(V, E)$, where V is a set of vertices or nodes and E is a set of edges that represent symmetric binary relations: $\left(V_{j}, V_{k}\right) \in E \rightarrow\left(V_{k}, V_{j}\right) \in E$
- Undirected graphs represent symmetric relations between objects, for example, the "brother" relation

More Definitions

- If there is an edge $E_{i}\left(V_{j}, V_{k}\right)$ between nodes j and k, then V_{j} is adjacent to V_{k}
- The degree of a node is the number of edges that are incident in that node
- Two edges associated to the same pair of vertices are said to be parallel edges (a)

(a)

(b)

(c)

More Definitions

- An edge that has its two endpoints in the same vertex is a cycle (b)
- A vertex that is not an endpoint to any edge is an isolated vertex -it has degree 0 (c)
- In a directed graph, the number of arcs pointing to a node is its in degree; and the number of edges pointing away from a node is its out degree

Types of Graphs (I)

Chain graph: a hybrid graph that has directed and undirected edges (a).
Simple graph: a graph that does not include cycles and parallel arcs (b).

Multigraph: a graph with several components (subgraphs), such that each component has no edges to the other components, i.e., they are disconnected (c).
Complete graph: a graph that has an edge between each pair of vertices (d).

Bipartite graph: a graph in which the vertices are divided in two subsets, G_{1}, G_{2}, such that all edges connect a vertex in G_{1} with a vertex in G_{2}; that is, there are no edges between nodes in each subset (e).

Weighted graph: a graph that has weights associated to its edges and/or vertices (f).

Types of Graphs (II)

Trajectories

- A trajectory is a sequence of edges, $E_{1}, E_{2}, \ldots, E_{n}$ such that the final vertex of each edge coincides with the initial vertex of the next edge in the sequence
- A simple trajectory (a) does not include the same edge two o more times; an elemental trajectory (b) is not incident on the same vertex more than once

(a)

(b)

Circuits

Trajectories and Circuits

Graph

Isomorphism
Trees
Cliques
Perfect Ordering

Ordering and Triangulation Algorithms

- A circuit is a trajectory such that the final vertex coincides with the initial one
- A simple circuit does not include the same edge two or more times; an elemental circuit is not incident on the same vertex more than once (except the initial/final vertex)

Directed Acyclic Graphs

Definitions

Types of

Graphs

- A Directed Acyclic Graph (DAG) is a directed graph that has no directed circuits (a directed circuit is a circuit in which all edges in the sequence follow the directions of the arrows)

Some Problems on Graphs

- Finding a trajectory that includes all edges in a graph only once (Euler trajectory).
- Finding a circuit that includes all edges in a graph only once (Euler circuit).
- Finding a trajectory that includes all vertices in a graph only once (Hamiltonian trajectory).
- Finding a circuit that includes all vertices in a graph only once (Hamiltonian circuit).
- Finding a Hamiltonian circuit in a weighted graph with minimum cost (Traveling salesman problem) ${ }^{1}$.
> ${ }^{1}$ In this case the nodes represent cities and the edges roads with an associated distance or time, so the solution will provide a traveling salesman with the "best" (minimum distance or time) route to cover all the cities.

Isomorphism (I)

- Two graphs are isomorphic if there is a one to one correspondence between their vertices and edges, so that the incidences are maintained
- Types:
(1) Graph isomorphism. Graphs G_{1} and G_{2} are isomorphic.
(2) Subgraph isomorphism. Graph G_{1} is isomorphic to a subgraph of G_{2} (or vice versa).
(3) Double subgraph isomorphism. A subgraph of G_{1} is isomorphic to a subgraph of G_{2}.

Isomorphism (II)

Definitions

Types of

Graphs

Trajectories

 and CircuitsGraph
Isomorphism

Trees

Cliques
Perfect
Ordering

- Determining if two graphs are isomorphic (type 1) is an NP problem; while the subgraph and double subgraph isomorphism problems (type 2 and 3) are NP-complete

Undirected trees

Graph

Isomorphism
Trees
Cliques
Perfect
Ordering
Ordering and Triangulation Algorithms

Properties

Definitions

- There is a simple trajectory between each pair of vertices.
- The number of vertices, $|V|$, is equal to the number of edges, $|E|$ plus one: $|V|=|E|+1$.
- A tree with two or more vertices has at least two leaf nodes.

Directed trees

- A directed tree is a connected directed graph such that there is only a single directed trajectory between each pair of nodes
- A rooted tree has a single node with an in degree of zero (the root node) and the rest have in degree of one
- A polytree might have more than one node with in degree zero (roots), and certain nodes (zero or more) with in degree greater than one

Terminology (I)

Root: a node with in degree equal to zero.
Leaf: a node with out degree equal to zero.
Internal node: a node with out degree greater than zero. Parent / Child: if there is a directed arc from A to B, A is parent of B and B is a child of A.
Brothers: two or more nodes that have the same parent. Ascendants /Descendants: if there is a directed trajectory from A to B, A is an ascendant of B and B is a descendant of A.
Subtree with root A : a subtree with A as its root. Subtree of A : a subtree with a child of A as its root.
K-ary Tree: a tree in which each internal node has at most K children. It is a regular tree if each internal node has K children.
Binary Tree: a tree in which each internal node has at most two children.

Terminology (II)

Definitions
 Types of Graphs
 Trajectories and Circuits
 Graph
 Isomorphism
 Trees
 Cliques
 Perfect
 Ordering
 Ordering and
 Triangulation Algorithms
 References

Complete set and subsets

- A complete graph is a graph, G_{c}, in which each pair of nodes is adjacent; that is, there is an edge between each pair of nodes
- A complete set, W_{c} is a subset of G that induces a complete subgraph of G. It is a subset of vertices of G so that each pair of nodes in this subgraph is adjacent

Cliques

- A clique, C, is a subset of graph G such that it is a complete set that is maximal; that is, there is no other complete set in G that contains C

Graph

Isomorphism

Trees

Cliques

Ordering

- An ordering of the nodes in a graph consists in assigning an integer to each vertex
- Given a graph $G=(V, E)$, with n vertices, then $\alpha=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$ is an ordering of the graph; V_{i} is before V_{j} according to this ordering, if $i<j$
- An ordering α of a graph $G=(V, E)$ is a perfect ordering if all the adjacent vertices of each vertex V_{i} that are before V_{i}, according to this ordering, are completely connected

Perfect Ordering

Clique Ordering

- In an analogous way as an ordering of the nodes, we can define an ordering of the cliques,

$$
\beta=\left[C_{1}, C_{2}, \ldots, C_{p}\right]
$$

- An ordering β of the cliques has the running intersection property, if all the common nodes of each clique C_{i} with previous cliques according to this order are contained in a clique $C_{j} ; C_{j}$ is the parent of C_{i}
- It is possible that a clique has more than one parent

Triangulated graphs

- A graph G is triangulated if every simple circuit of length greater than three in G has a chord
- A chord is an edge that connects two of the vertices in the circuit and that is not part of that circuit
- A condition for achieving a perfect ordering of the vertices, and having an ordering of the cliques that satisfies the running intersection property, is that the graph is triangulated

Maximum Cardinality Search

- Given that a graph is triangulated, the following algorithm guarantees a perfect ordering:
(1) Select any vertex from V and assign it number 1.
(2) WHILE Not all vertices in G have been numbered:
(1) From all the non-labeled vertices, select the one with higher number of adjacent labeled vertices and assign it the next number.
(2) Break ties arbitrarily.

Example - Maximum Cardinality Search

Definitions
 Types of
 Graphs
 Trajectories and Circuits
 Graph
 Isomorphism
 Trees
 Cliques
 Perfect
 Ordering

Ordering and Triangulation Algorithms

Graph filling

- The filling of a graph consists of adding arcs to an original graph G to make it triangulated
- The following algorithm makes the graph triangulated:
(1) Order the vertices V with maximum cardinality search: $V_{1}, V_{2}, \ldots, V_{n}$.
(2) $\mathrm{FOR} i=n \mathrm{TO} i=1$
(1) For node V_{i}, select all its adjacent nodes V_{j} such that $j>i$. Call this set of nodes A_{i}.
(2) Let V_{m} be the node with largest number in A_{i}
(3) Add an arc from V_{i} to V_{k} if $k>i, k<m$ and $V_{k} \notin A_{i}$.

Example - Graph Filling

The resulting graph has one additional arc: 2-4

Additional Reading

囯 Aho, A.V., Hopcroft, J.E, Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)

- Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Netherlands (1994)

囯 Gould, R.: Graph Theory. Benjamin/Cummings, Menlo Park (1988)

Ress, J.L, Yellen, J.: Graph Theory and its Applications. CRC Press, Boca Raton (2005)
(Neapolitan, R.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. Wiley, New York (1990)

