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Introduction

Introduction

• Bayesian networks are directed graphical models that
represent the joint distribution of a set of random
variables

• In this graphs, the nodes represent random variables
and the arcs direct dependencies between variables

• The structure of the graph encodes a set of conditional
independence relations between the variables

(L E Sucar: PGM) 3 / 48
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Introduction

Example

• Fever is independent of Body ache given Flu (common
cause)

• Fever is independent of Unhealthy food given Typhoid
(indirect cause)

• Typhoid is independent of Flu when Fever is NOT
known (common effect). Knowing Fever makes Typhoid
and Flu dependent

(L E Sucar: PGM) 4 / 48
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Introduction

Introduction

• In addition to the structure, a Bayesian network
considers a set of local parameters, which are the
conditional probabilities for each variable given its
parents in the graph

• The joint probability of all the variables in the network
can be represented based on these local parameters;
this usually implies an important saving in the number
of required parameters

• Given a Bayesian network we can answer several
probabilistic queries. For instance, for the previous
example: What is the probability of Fever given Flu?
Which is more probable, Typhoid or Flu, given Fever
and Unhealthy food?
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Representation

Bayesian Networks

• A Bayesian network (BN) represents the joint
distribution of a set of n (discrete) variables,
X1,X2, . . . ,Xn, as a directed acyclic graph (DAG) and a
set of conditional probability tables (CPTs)

• Each node, that corresponds to a variable, has an
associated CPT that contains the probability of each
state of the variable given its parents in the graph

• The structure of the network implies a set of conditional
independence assertions, which give power to this
representation
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Representation

An example

• Joint distribution:
P(C,T ,G,R,F ,D) =
P(C)P(G)P(T | C)P(R | T )P(F | T ,G)P(D | T ,G)
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Conditional Independence Assertions

• The conditional independence assertions implied by the
structure of a BN should correspond to the conditional
independence relations of the joint probability
distribution, and vice versa

• If X is conditionally independent of Z given Y :
• In the probability distribution: P(X |Y ,Z ) = P(X |Y ).
• In the graph: I < X | Y | Z >.

(L E Sucar: PGM) 8 / 48
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D-Separation

• Conditional independence assertions can be verified
directly from the structure of a BN using a criteria called
D–separation

• 3 basic BN structures for 3 variables and 2 arcs:
• Sequential: X → Y → Z .
• Divergent: X ← Y → Z .
• Convergent: X → Y ← Z .

• In the first two cases, X and Z are conditionally
independent given Y , however in the third case this is
not true

(L E Sucar: PGM) 9 / 48
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Representation Structure

D-Separation

• Given a graph G, a set of variables A is conditionally
independent of a set B given a set C, if there is no
trajectory in G between A and B such that:

1 All convergent nodes are or have descendants in C.
2 All other nodes are outside C.

(L E Sucar: PGM) 10 / 48
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Bayes Ball

• Consider that we have a path from node X to Z with Y
in the middle - Y is shaded if it is known (instantiated),
otherwise it is not shaded

• We throw a ball from X to Z , if the ball arrives to Z then
X and Z are NOT independent given Y :

1 If Y is sequential or divergent and is not shaded, the ball
goes through.

2 If Y is sequential or divergent and it is shaded, the ball
is blocked.

3 If Y is convergent and not shaded, the ball is blocked.
4 If Y is convergent and shaded, the ball goes through.
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Bayes Ball
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Representation Structure

Contours

• Markov assumption: any node X is conditionally
independent of all nodes in G that are not descendants
of X given its parents in the graph, Pa(X )

• The structure of a BN can be specified by the parents of
each variable; thus the set of parents of a variable X is
known as the contour of X

• Given this condition and using the chain rule, we can
specify the joint probability distribution of the set of
variables in a BN as the product of the conditional
probability of each variable given its parents

(L E Sucar: PGM) 13 / 48
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Markov Blanket

• The Markov Blanket of a node X , MB(X ), is the set of
nodes that make it independent of all the other nodes in
G, that is P(X | G − X ) = P(X | MB(X ))

• For a BN, the Markov blanket of X is:
• the parents of X ,
• the sons of X ,
• and other parents of the sons of X .

(L E Sucar: PGM) 14 / 48
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Mappings

• Given a probability distribution P of X, and its graphical
representation G, there must be a correspondence
between the conditional independence in P and in G -
mappings:

D-Map: all the conditional independence relations
in P are satisfied (by D-Separation) in G.

I-Map: all the conditional independence relations
in G are true in P.

P-Map: or perfect map, it is a D-Map and an I-Map.
• It is not always possible to have a perfect mapping of

the independence relations between the graph (G) and
the distribution (P), so we settle for what is called a
Minimal I–Map: all the conditional independence
relations implied by G are true in P, and if any arc is
deleted in G this condition is lost

(L E Sucar: PGM) 15 / 48
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Independence Axioms

• Given some conditional independence relations
between subsets of random variables, we can derive
other conditional independence relations axiomatically

• Independence axioms:

Symmetry: I(X ,Z ,Y )→ I(Y ,Z ,X )
Decomposition:

I(X ,Z ,Y ∪W )→ I(X ,Z ,Y ) ∧ I(X ,Z ,W )
Weak Union: I(X ,Z ,Y ∪W )→ I(X ,Z ∪W ,Y )
Contraction:

I(X ,Z ,Y )∧I(X ,Z∪Y ,W )→ I(X ,Z ,Y∪W )
Intersection: I(X ,Z ∪W ,Y ) ∧ I(X ,Z ∪ Y ,W )→

I(X ,Z ,Y ∪W )

(L E Sucar: PGM) 16 / 48



Introduction

Representa-
tion
Structure

Parameters

Inference
Probability
propagation

References

Representation Structure

Graphically
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Representation Parameters

CPTs

• In the case of a BN, the parameters are the conditional
probabilities of each node given its parents in the graph

• If we consider discrete variables:
• Root nodes: vector of marginal probabilities.
• Other nodes: conditional probability table (CPT) of the

variable given its parents in the graph.

(L E Sucar: PGM) 18 / 48
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Example
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Canonical Models

• Canonical models represent the relations between a set
of random variables for particular interactions using few
parameters

• There are several classes of canonical models, the
most common are the Noisy OR and Noisy AND for
binary variables, and their extensions for multivalued
variables, Noisy Max and Noisy Min, respectively

• For example, consider a variable that represents a
disease, D. In the case of the binary canonical models
it has two values, True and False. For a multivalued
model, it could be defined as
D ∈ {False,Mild , Intermediate,Severe}, such that these
values follow a predefined order

(L E Sucar: PGM) 20 / 48
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Noisy-OR

• The Noisy OR model is applied when several variables
or causes can produce an effect if any one of them is
True, and as more of the causes are true, the probability
of the effect increases

(L E Sucar: PGM) 21 / 48
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Conditions

• The following two conditions must be satisfied for a
Noisy OR canonical model to be applicable:
Responsibility: the effect is false if all the possible

causes are false.
Independence of exceptions: if an effect is the

manifestation of several causes, the
mechanisms that inhibit the occurrence of
the effect under one cause are
independent of the mechanisms that inhibit
it under the other causes.

• The probability that the effect E is inhibited (it does not
occur) under cause Ci is defined as:

qi = P(E = False | Ci = True) (1)

(L E Sucar: PGM) 22 / 48
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Parameters

• The parameters in the CPT for a Noisy OR model can
be obtained using the following expressions when all
the m causes are True:

P(E = False | C1 = True, ...Cm = True) =
m∏

i=i

qi (2)

P(E = True | C1 = True, ...Cm = True) = 1−
m∏

i=i

qi (3)

• If k of m causes are True, then
P(E = False | C1 = True, ...Ck = True) =

∏k
i=i qi , so

that if all the causes are False then the effect is False
with a probability of one

(L E Sucar: PGM) 23 / 48
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Example

• Three causes, C1,C2,C3

• q1 = q2 = q3 = 0.1

CPT:

C1 0 0 0 0 1 1 1 1
C2 0 0 1 1 0 0 1 1
C3 0 1 0 1 0 1 0 1
P(E = 0) 1 0.1 0.1 0.01 0.1 0.01 0.01 0.001
P(E = 1) 0 0.9 0.9 0.99 0.9 0.99 0.99 0.999

(L E Sucar: PGM) 24 / 48
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Decision Trees

• An alternative representation is based on the
observation that in the probability tables for many
domains, the same probability values tend to be
repeated several times in the same table

• A decision tree (DT) could be used for representing a
CPT in a compact way:
Each internal node corresponds to a variable in the
CPT, and the branches from a node correspond to the
different values a variable can take. The leaf nodes in
the tree represent the different probability values. A
trajectory from the root to a leaf, specifies a probability
value for the corresponding variables–values in the
trajectory

(L E Sucar: PGM) 25 / 48
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Example - CPT

A B C D E F G X
T T/F T/F T/F T/F T/F T/F 0.9
F T T/F T T/F T T 0.9
F T T/F T T/F T F 0.0
F T T/F T T/F F T/F 0.0
F T T F T T/F T 0.9
F T T F T T/F F 0.0
F T T F F T/F T/F 0.0
F T F F T/F T/F T/F 0.0
F F T T/F T T/F T 0.9
F F T T/F T T/F F 0.0
F F T T/F F T/F T/F 0.0
F F F T/F T/F T/F T/F 0.0
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Example - DT
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Decision Diagram

• A decision diagram (DD) extends a DT by considering a
directed acyclic graph structure, such that it is not
restricted to a tree

• This avoids the need to duplicate repeated probability
values in the leaf nodes, and in some cases provides an
even more compact representation

(L E Sucar: PGM) 28 / 48
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Example - DD
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Inference

Probabilistic inference

• Probabilistic inference consists in propagating the
effects of certain evidence in a Bayesian network to
estimate its effect on the unknown variables

• There are basically two variants of the inference
problem in BNs:

• Single query inference: obtaining the posterior
probability of a single variable, H, given a subset of
known (instantiated) variables, E, that is, P(H | E)

• Conjunctive query inference: consists in calculating the
posterior probability of a set of variables, H given the
evidence, E, that is, P(H | E)

(L E Sucar: PGM) 30 / 48
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Inference

Inference algorithms:

1 Probability propagation (Pearl’s algorithm)
2 Variable elimination
3 Conditioning
4 Junction tree
5 Stochastic simulation

(L E Sucar: PGM) 31 / 48
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Inference

Complexity

• In the worst case the inference problem is NP-hard for
Bayesian networks

• There are efficient (polynomial) algorithms for certain
types of structures (singly connected networks)

• For other structures it depends on the connectivity of
the graph.

• In many applications, the graphs are sparse and in this
case there are inference algorithms which are very
efficient

(L E Sucar: PGM) 32 / 48
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Inference Probability propagation

Probability propagation in trees

• Given that the BN has a tree structure, any node divides
the network into two independent subtrees

(L E Sucar: PGM) 33 / 48
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Inference Probability propagation

Basic equations

• Given certain evidence, E (subset of instantiated
variables), the posterior probability for a value i of any
variable B, can be obtained by applying the Bayes rule:

P(Bi |E) = P(Bi)P(E|Bi)/P(E) (4)

• We can separate the evidence into:
E-: Evidence in the tree rooted in B.
E+: All other evidence.

• Then:

P(Bi |E) = P(Bi)P(E−,E + |Bi)/P(E) (5)

(L E Sucar: PGM) 34 / 48
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Inference Probability propagation

Basic equations

• Given that E+ and E− are independent, by applying the
Bayes rule again, we obtain:

P(Bi |E) = αP(Bi |E+)P(E− |Bi) (6)

Where α is a normalization constant.
• We define the following terms:

λ(Bi) = P(E− |Bi) (7)

π(Bi) = P(Bi |E+) (8)

• Then:
P(Bi |E) = απ(Bi)λ(Bi) (9)

(L E Sucar: PGM) 35 / 48
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Inference Probability propagation

Propagation algorithm

• The computation of the posterior probability of any node
B is decomposed into two parts: (i) the evidence
coming from the sons of B in the tree (λ), and the
evidence coming from the parent of B, (π)

• We can think of each node B in the tree as a simple
processor that stores its vectors π(B) and λ(B), and its
conditional probability table, P(B | A)

• The evidence is propagated via a message passing
mechanism, in which each node sends the
corresponding messages to its parent and sons in the
tree

(L E Sucar: PGM) 36 / 48
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Inference Probability propagation

Messages

• A message sent from node B to its parent A:

λB(Ai) =
∑

j

P(Bj | Ai)λ(Bj) (10)

• A message sent from node B to its son Sk :

πk (Bi) = απ(Bj)
∏
l 6=k

λl(Bj) (11)

where l refers to each one of the sons of B

(L E Sucar: PGM) 37 / 48
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Inference Probability propagation

Combination and Propagation

• Each node can receive several λ messages, which are
combined via a term by term multiplication for the λ
messages received from each son:

λ(Ai) =
m∏

j=1

λSj(Ai) (12)

• The propagation algorithm starts by assigning the
evidence to the known variables, and then propagating
it through the message passing mechanism until the
root of the tree is reached for the λ messages, and the
leaves are reached for the π messages

(L E Sucar: PGM) 38 / 48
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Bottom-up propagation
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Top-down propagation
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Inference Probability propagation

Initial Conditions

Leaf nodes: If not known, λ = [1,1, ...,1] (a uniform
distribution). If known, λ = [0,0, ...,1, ...,0] (one
for the assigned value and zero for all other
values).

Root node: If not known, π = P(A) (prior marginal
probability vector). If known,
π = [0,0, ...,1, ...,0] (one for the assigned value
and zero for all other values).

(L E Sucar: PGM) 41 / 48
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Propagation - example

• Consider that the only evidence is F = false - initial
conditions for the leaf nodes are:
λF = [1,0] and λD = [1,1] (no evidence)

(L E Sucar: PGM) 42 / 48



Introduction

Representa-
tion
Structure

Parameters

Inference
Probability
propagation

References
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Example - λ propagation

• Multiplying the λ vectors by the corresponding CPTs:

λF (E) = [1,0][
0.9,0.5
0.1,0.5

] = [0.9,0.5]

λD(E) = [1,1][
0.7,0.4
0.3,0.6

] = [1,1]

• Then, λ(E) is obtained by combining the messages
from its two sons:

λ(E) = [0.9,0.5]× [1,1] = [0.9,0.5]

• Propagation to its parent, C:

λE(C) = [0.9,0.5][
0.9,0.7
0.1,0.3

] = [0.86,0.78]

(L E Sucar: PGM) 43 / 48
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Example - π propagation

• Given that C is not instantiated, π(C) = [0.8,0.2]
• Propagate to its son, E , which also corresponds to

multiplying the π vector by the corresponding CPT:

π(E) = [0.8,0.2][
0.9,0.7
0.1,0.3

] = [0.86,0.14]

• We now propagate to its son D; however, given that E
has another son, F , we also need to consider the λ
message from this other son, thus:

π(D) = [0.86,0.14]× [0.9,0.5][
0.7,0.4
0.3,0.6

] = [0.57,0.27]

(L E Sucar: PGM) 44 / 48
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Example - posterior probabilities

• Given the λ and π vectors for each unknown variable,
we just multiply them term by term and then normalize
to obtain the posterior probabilities:

P(C) = [0.86,0.2]× [0.86,0.78] = α[0.69,0.16]

= [0.815,0.185]

P(E) = [0.86,0.14]× [0.9,0.5] = α[0.77,0.07]

= [0.917,0.083]

P(D) = [0.57,0.27]×[1,1] = α[0.57,0.27] = [0.67,0.33]

(L E Sucar: PGM) 45 / 48
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Analysis

• The time complexity to obtain the posterior probability of
all the variables in the tree is proportional to the
diameter of the network (the number of arcs in the
trajectory from the root to the most distant leaf).

• The message passing mechanism can be directly
extended to polytrees, as these are also singly
connected networks. In this case, a node can have
multiple parents, so the λ messages should be sent
from a node to all its parents

• The propagation algorithm only applies to singly
connected network

(L E Sucar: PGM) 46 / 48
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