
Learning on a Budget Using Distributional RL
Jonathan Serrano-Cuevas∗

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Jonathan.Serrano@cwi.nl

Eduardo F. Morales
INAOE

Puebla, Mexico
emorales@inaoep.mx

Pablo Hernandez-Leal
Daan Bloembergen
Michael Kaisers

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

{Pablo.Hernandez,D.Bloembergen,
Kaisers}@cwi.nl

ABSTRACT
Agents acting in real-world scenarios often have constraints such
as finite budgets or daily job performance targets. While repeated
(episodic) tasks can be solved with existing reinforcement learning
algorithms, methods need to be extended if the repetition depends
on performance. Recent work has introduced a distributional per-
spective on reinforcement learning, providing a model of episodic
returns. Inspired by these results we contribute the new budget- and
risk-aware distributional reinforcement learning (BRAD-RL) algo-
rithm that bootstraps from the C51 distributional output and then
uses value iteration to estimate the value of starting an episode
with a certain amount of budget. With this strategy we can make
budget-wise action selection within each episode and maximize
the return across episodes. Experiments in a grid-world domain
highlight the benefits of our algorithm, maximizing discounted
future returns when low cumulative performance may terminate
repetition.

KEYWORDS
Distributional RL; budget aware; risk safe

1 INTRODUCTION
The concept of Safe Reinforcement Learning (SRL) has been recently
gaining interest in fields such as business, finance or robotics. SRL
can be defined as the process of learning policies that maximize the
expected total return in problems where it is important to ensure
reasonable system performance and/or respect safety constraints
during the learning and/or deployment processes [5]. In this paper
we are interested in the reasonable system performance issue, par-
ticularly in episodic and risky tasks, where the risk comes in the
form of stochastic returns following a certain distribution and when
the agent has limited resources or budget. An example of this setting
is a day trader working for a large bank: he has to analyze historical
information to design a path of action to invest a certain amount
of money, targeting to obtain a profit at the end of the day. This
means that as long as there are positive results by the afternoon
he can afford to have a negative balance at some time of the day,
∗Work performed during an internship at the Intelligent and Autonomous Systems
Group at CWI.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. Andre, S. Koenig (eds.), July 2018, Stockholm,
Sweden
© 2018 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.
https://doi.org/doi

perhaps because of unrealized losses [1]. In such scenarios often
the actions that lead to the maximum value in expectation are also
the riskiest and could deplete the agent’s budget. As an example
assume an agent in state s0 that has to decide between two actions
as and ar with expected rewards of E[r |s = s0,a = as] = 2 and
E[r |s = s0,a = ar] = 3. With only this information, the common
choice, would be to take ar because it maximizes the expected re-
ward. Notwithstanding, E[r |s = s0,a = ar] is given by a stochastic
distribution of -2 and 6 in contrast to E[r |s = s0,a = as] which is
governed by a deterministic value. In light of this information, i.e.,
the value distribution, different strategies could be considered. For
example, a safe strategy will select only the action that yields a pos-
itive deterministic value, and a risky strategy will select the action
with a larger expected value, even if there exists the probability
of receiving a negative reward. Following the previous example
we can see that there are issues if the expected value is used as
an estimator of a policy’s value: E[r |s = s0,a = ar] = 3 is a bad
estimator of the two real possible rewards. This can be even worse
if the returns are multi-modal. The main problem arises when a
question like If I have a budget of b, should I select the risky action?
is asked. If the agent only had the information about the expected
value instead of the distribution the answer might be affirmative,
but the answer will be different if we account for the full distri-
bution. The problem becomes more relevant if we observe that
any given reward will affect the budget we will have in a future
decision step. Hence a budget-aware learning policy will consider
the current amount of resources and the reward distribution before
choosing an action. Let b(0) the amount of resources an agent has at
time t = 0, then, if the agent follows a budget-aware policy, it will
maximize its expected return while ensuring that b(t) > 0;∀ti > t0.

Areas where budget and risk consideration are needed are abun-
dant, some examples are: tariff generation for energy markets [16],
heating management in smart houses [9], and online advertis-
ing [10]. Even when there has been work on risk in RL [5, 7, 11, 13],
to our knowledge none of them have addressed the issue of budget
and risk, even though these two concepts are very related.

In this paper we make use of the distributional information
provided by the C51 algorithm proposed by Bellemare [2] to build
budget- and risk-aware policies. This task is not trivial because
the budget is a variable that changes with every reward received
(see Eq. 2). For this reason, simply including it as part of the state
will lead to discretization issues and an exponential increase in the
number of states that could make it infeasible to find an optimal
policy. To address this issue we followed a different strategy by

https://doi.org/doi

AAMAS’18, July 2018, Stockholm, Sweden J. Serrano Cuevas et al.

bootstrapping from an unbudgeted policy to learn budget-aware
policies.

This paper is structured as follows: Section 2 describes the clos-
est related work to risk and budget, Section 3 shows the relevant
background including distributional RL. Section 4 describes our
approach to use distributional RL to learn budget and risk-aware
policies. Section 5 presents the experimental setting and our results.
Section 6 presents a discussion about related work and finally in
Section 7 we offer some conclusions.

2 RELATEDWORK
The concept of budget has been studied before, for example in multi-
armed bandits (MABs). Tran-Thanh et al. proposed the budget-
limited MAB with an overall budget, where the exploration and
exploitation phases have a limited budget [19]. However, the setting
is more limited than the one considered here, since the reward is
observed immediately after executing an action (pulling an arm),
while we used an experiment setting where the reward is received
after following a (small) series of actions.

Safety in RL [12] is a concept that is gaining a lot of interest.
It includes a wider variety of topics such as safe interruptibility,
distributional shift, robustness to adversaries, and safe exploration.
Approaches to address safe exploration in RL have proposed ideas
such as the use of ergodicity in MDPs to define safety [14], or the
use of backup policies to help the system return to a controlled
(safe) state [6].

One of the earliest works that analysed risk in reinforcement
learning was presented by Heger [7]. The basic idea is to adjust
the Q-learning algorithm to account for risky behaviors. Heger
proposed Q̂-learning whichmaximizes theworst-case scenarios, this
is, it finds policies that minimize the worst-case total discounted
costs. However, only considering worst-case scenarios might be
too extreme. Instead, other works have studied a more general
version to parametrize the desired level of risk and consider, for
example, risk-averse and risk-seeking behaviors. Examples of this
case are the risk-sensitive algorithms proposed by Mihatsch and
Neuneir [13] which use the variance of the returns [18] as a measure
of risk. Yu and Nikolova [22] proposed the use of several variations
of Value at Risk, which a common measure of risk in finance [8,
21]. Similar ideas had been analysed in the context of actor-critic
algorithms [11]. An important remark is that none of these works
consider risk and budget jointly as we do in this work.

3 BACKGROUND
In this section we review the frameworks of reinforcement learning
and distributional reinforcement learning.

3.1 Reinforcement learning
Reinforcement learning (RL) formalizes the interaction of an agent
with the environment using a Markov decision process (MDP).
An MDP is defined by the tuple ⟨S,A,R,T ⟩ where S represent the
world divided up into a finite set of possible states. A represents
a finite set of available actions. The transition function T : S ×
A→ ∆(S) maps each state-action pair to a probability distribution
over the possible successor states, where ∆(S) denotes the set of
all probability distributions over S . Thus, for each s, s ′ ∈ S and

a ∈ A, the function T determines the probability of a transition
from state s to state s ′ after executing action a. The reward function
R : S ×A × S → R defines the immediate and possibly stochastic
reward that an agent would receive for being in state s , executing
action a and transitioning to state s ′.

MDPs are adequate models to obtain optimal decisions in single
agent environments. Solving an MDP will yield a policy π : S → A,
which is a mapping from states to actions. An optimal policy π∗

is the one that maximises the expected discounted reward. There
are different techniques for solving MDPs assuming a complete
description of all its elements. One of the most common techniques
is the value iteration algorithm [3] which is based on the Bellman
equation:

V π (s) =
∑
a∈A

π (s,a)
∑
s ′∈S

T (s,a, s ′)[R(s,a, s ′) + γV π (s ′)],

with γ ∈ [0, 1). This equation expresses the value of a state which
can be used to obtain the optimal policy π∗ = arg maxπ V π (s), i.e.,
the one that maximizes that value function, and the optimal value
function is

V ∗(s) = max
π

V π (s) ∀s ∈ S .
Q-learning [20] is one well known algorithm for RL. It has been

devised for stationary, single-agent, fully observable environments
with discrete actions. A Q-learning agent can be in a state s ∈ S and
can choose an action a ∈ A. It keeps the estimate of its expected
payoff starting in state s , taking action a as Q(s,a). Each entry
Q(s,a) is an estimate of the corresponding optimalQ∗ function that
maps state-action pairs to the discounted sum of future rewards
when starting with the given action and following the optimal
policy thereafter. Each time the agent makes a transition from a
state s to a state s ′ via action a receiving payoff r , the Q table is
updated as follows:

Q(s,a) = Q(s,a) + α[(r + γ max
b

Q(s ′,b)) −Q(s,a)]

with the learning rate α and the discount factor γ ∈ [0, 1] being
parameters of the algorithm, with α typically decreasing over the
course of many iterations.Q-learning is proved to converge towards
Q∗ if each state-action pair is visited infinitely often under specific
parameters [20].

3.2 Distributional RL
A common approach to reinforcement learning is to model the
expectation of the returns, commonly referred as value. However, if
the returns are a bimodal (or even a multi-modal) random variable,
the expected value might be a very bad estimator of the goodness
of an action, i.e., the positive expected value of an action might be
the result of negative and positive rewards. In this context, Belle-
mare at al. [2] proposed a distributional perspective of RL, which
argues for the fundamental importance of the full distribution of
the random returns received by a reinforcement learning agent,
whose expectation is the value Q . Following this idea they propose
a random variable Z (s,a) which is a mapping from state-action
pairs to distributions over the returns, called value distribution.
This means that, instead of having a scalar for each state-action
pair a distribution over the returns is approximated, in particular
using a categorical distribution with n categories, or atoms, over a

Learning on a Budget Using Distributional RL AAMAS’18, July 2018, Stockholm, Sweden

Figure 1: BRAD-RL building blocks. BRAD-RL uses the re-
sult of C51 (unbudgeted case): the value distributions (1) to
compute cumulative density distributions (2), then these are
plugged together with the budget into a modified value iter-
ation (3) to compute a budget-aware policy (4).

fixed range. Stated in another way, whenever a new reward rt is
received it is distributed into one of the n possible atoms. The au-
thors evaluated different number of atoms and reported that n = 51
yield the best scores, hence the algorithm’s name C51, shown in
Algorithm 1. This distribution describes the probability of a reward
in the distribution’s support ẑ, which is kept constant by using a
projection technique at each update (lines 5-9). We will refer with
pi (s,a) to the ith probability that corresponds to the ith atom in
ẑ for any given state-action pair. With this in mind the expected
value Q can be calculated using Eq. 1,

Q(s,a) =
∑
(ẑ · Z (s,a)) =

∑
i
zipi (s,a). (1)

The limits of the support ẑ are z0 = Vmin and zn−1 = Vmax , the set
that contains all the available supports zi is z̄, and the support step
size is ∆z = Vmax−Vmin

N−1 .
Note that C51 algorithm uses a discrete approximation of the real

value distribution. Using this discrete version has the advantages of
being highly expressive and computationally friendly [15]. Lastly, it
is important tomention that C51 used a simple ϵ−greedy policy over
the expected action values [2], without using the full distribution
information in the action selection.

Algorithm 1 Categorical update algorithm as proposed in [2].

Require: A transition xt ,at , rt ,xt+1,γt ∈ [0, 1]
1: Q(xt+1,a) :=

∑
i zipi (xt+1,a)

2: a∗ ← arдmaxa Q(xt+1,a)
3: mi = 0, i ∈ 0, ...,N − 1
4: for j ∈ 0, ...,N − 1 do
5: τ̂zj ← [rt + γt + zj]

VMAX
VMIN

6: bj ← (τzj −VMIN /∆z)
7: l ← ⌊bj ⌋,u ← ⌈bj ⌉
8: ml ← pj (xt+1,a∗)(u − bj)
9: mu ← pj (xt+1,a∗)(bj − l)
10: end for
11: return −∑imi loд pi (xt ,at)

4 BRAD-RL
The C51 distributional approach provides valuable information
which we can leverage to take budget- and risk- aware decisions.

Before we describe our algorithm we will define the budget as a
cumulative variable which is updated at every time t when a new
reward is received, as indicated by Eq. 2.

b(t + 1) = r (t) + b(t) (2)
Since the reward distribution (provided by C51) and the current

budget are the two main inputs of our Budget and Risk Aware RL
(BRAD-RL) algorithm, we are now ready to describe it. In a nutshell
the process is as follows.We assume that we learnedZ (s,a) by using
C51 in an unbudgeted process. Then, we use the corresponding
CDF to calculate an optimistic estimate of starting an episode with
a certain amount of budget. Finally, we use value iteration to obtain
a more accurate estimate of a budget-aware policy. A high-level
idea of this process is depicted in Figure 1 and the details of this
process will be described in this section.

4.1 Optimistic estimate
To compute the optimistic estimate for any given budget we use
the cumulative density function (CDF) for each action of the dis-
tribution Z learned by C51 algorithm, which is defined for a fixed
support z ∈ [Vmin ,Vmax]. Then, for every action a, the CDF of Z
is defined as FZa (z).

Now, assume the current agent’s budget is b, then, for any state-
action pair the probability of receiving an episodic return re smaller
than −b corresponds to the probability of running out of budget as
stated by Eq. 3

Pr(re ≤ −b |s,a) = FZa (−b |s). (3)
However, since we are dealing with a discrete version of the CDF
we can compute

Pr (re ≤ 0|s,a) =
h∑
i=0

pi (s,a)

where h corresponds to the first index of the support whereV > −b.
We propose an alternative measurement as the probability β of
having an episodic return re larger than a certain budget b, in state
s taking action a, which we write as,

β(b, s,a) = 1 − Pr(re ≥ b |s,a). (4)
With Eq. 4 we can define an optimistic estimate starting an

episode at state s0 while having a certain budget as

Qoptimist ic (⟨s0,b⟩,a) = Q(s0,a) + β(b, s0,a)
γe

1 − γe
Q∗, (5)

where Q∗ = maxa Q(s,a), Eq. 5 is optimistic because it assumes
that if the episodic return is larger than the current budget, with a
probability β it will receive the best known episodic return Q∗ at
each episode ever after discounted by γe . In what follows we show
that this estimate is a particular case of the value iteration form.

4.2 Budget-aware value iteration
According to Sutton and Barto [17] the process of value iteration is
described by the update operation

V (s) = max
a

∑
s ′,r

p(s ′, r |s,a)
[
r + γV (s ′)

]
,

AAMAS’18, July 2018, Stockholm, Sweden J. Serrano Cuevas et al.

Table 1: Possible episodic returns. Absorbing states are
marked with ∗.

Route Reward
s3, s4* -1-1+6=4
s1* -1-4=-5
s1, s0* -1-1+12=10

that can be written for Q as:

Q(s,a) =
∑
s ′,r

p(s ′, r |s,a)
[
r + γ max

a
Q(s ′,a)

]
for all states s ∈ S . We aim to estimate the expected value of starting
an episode from a fixed state s0, with a certain amount of budget,
given the return distribution learned by C51 algorithm, i.e., all the
possible returns. Also we know from Eq. 2 that the current budget
depends on the last recorded budget and the last received reward.
Thus, the expected value of having a budget b as calculated by value
iteration is defined by Eq. 6, where pi (s,a) and zi are the same as
described in Eq. 1, and γe is an episodic discount rate.

Q(⟨s0,b⟩,a) =
∑
i
pi (s0,a)[zi + γe max

a
Q(⟨s0,b + zi ⟩,a)] (6)

It is important to note that ifQ(⟨s0,b+zi ⟩,a) = 0, then the value
of having a budget of b corresponds to the C51 episodic expectation
as shown in Eq. 1. On the other hand, if we assume that we have a
large amount of budget so that we obtain the best possible return
for an infinite number of episodes afterwards, then

Q(⟨s0,b⟩,a) =
∑
i
pi (s0,a) · zi +

∑
i
pi (s0,a) ·

γe
1 − γe

Q∗

= Q(s0,a) +
γe

1 − γe
Q∗.

Since for large budgets β → 1, then if these assumptions hold Eq. 5
corresponds to Eq. 6.

One last issue to solve is the fact that the budget is a continuous
variable. To deal with this we discretized the budget in a finite
number of bins within the same range [Vmin ,Vmax] for which the
support z is defined. Then, after calculating b + zi we projected the
result to the closest integer bin and performed the update.

5 EXPERIMENTS
This section describes our experimental results. First, we present a
grid-world scenario that highlights the importance of considering
a budget. Then we provide details about the C51 training process
and we present experimental results comparing BRAD-RL with
standard C51 and two baselines (risky and safe strategies). Finally,
we show results of the optimistic approach and the value iteration
results.

5.1 Scenario description
To model a problem where there exists a trade off between expected
reward and risk we propose a grid-world created as a custom Open
AI Gym [4] environment depicted in Figure 2. The scenario consists
of a 5 column grid with two fixed absorbing states s0 and s4 at the

Figure 2: The test scenario used to generate the C51 estima-
tions. There is a probability p of ending the episode with a
negative reward in s1, otherwise with probability 1 − p the
agent can safely pass through.

0.0

0.5

c5
1

0

1

CD
F

0

1

Be
ta

15 10 5 0 5 10 150

100

Qo
pt 0 left (risky)

1 right (safe)

Figure 3: State information at the beginning of an episode.
From top to bottom: (C51) return probability distribution,
(CDF) cumulative density function, the probability β (Beta)
of having a positive budget at the end of the episode as a
function of the budget, and the optimistic value expectation
Qopt .

edges. The agent starts in the middle, s2, with two possible actions,
to move to the left (a0) or to the right (a1). With probability pw the
state s1 becomes an absorbing state and provides a negative reward,
rdanдer , to the agent. With probability 1 − pw it can safely pass s1
towards s0. Every step, (including the ones to the absorbing states)
provide the agent with a reward of −1. Possible episodic returns
are shown in Table 1. The reason behind using a small grid-world
to test our agent is that we want to model the fact that a series of
actions is required to complete the task, and there are many ways
to do so. For instance, the series of actions Right, Left, Left, Left and
Left, Left will all lead to state s0 with a probability 1 − pw .

Two standard outcomes in this world are easily seen: if the agent
picks the route towards s4 it will receive deterministically a reward
of rdet . However, if it chooses a path towards s0, with probability
pw , it will receive a reward of rdanдer and, with probability 1 −
pw , it will receive a reward of rmax . By using C51 algorithm we
can estimate not only the expected value of each action, but the
complete distribution. Figure 3 (top) shows the information for the
initial state s2 after being trained using C51 with values rdanдer =
−5, rdet = 4, rmax = 10.

Learning on a Budget Using Distributional RL AAMAS’18, July 2018, Stockholm, Sweden

5.2 C51 training
To obtain the returns’ distributional information we trained an
agent for a total of 20,000 episodes using the C51 categorical al-
gorithm shown in Alg. 1 as follows. We used 1,000 episodes to
initialize a replay memory which was updated after the same num-
ber of steps. Then, we followed an ϵ-greedy strategy for 9,000
episodes to pick up an action (line 2 of Alg. 1). Finally, we trained
the model for the remaining 10,000 episodes. The result of this
process for state S2 can be seen in the first panel of Fig. 3. An
important remark is the fact that C51 makes no use of the distribu-
tional information for action selection, instead it just considers the
expectation Q(st+1,a) :=

∑
i zipi (st+1,a). For this reason, we used

the distributional information along with the expectation to build a
budget-aware algorithm; first by calculating an optimistic estimate
and later by using value iteration to calculate the real estimate.

5.3 Learning budget aware policies
To illustrate the usefulness of knowing the reward distribution
provided by C51 algorithm to learn budget-aware policies we will
use the results of Fig. 3. The top subplot (C51) shows the output
of using C51 algorithm to estimate the reward distribution for a
given problem; where an agent has to pick between actions a0 (in
blue) and a1 (in orange). C51 estimated that there are two possible
outcomes for a0, a positive outcome and a negative outcome. On
the other hand a1 has only one positive outcome.

Hence, a0 can be considered risky strategy whereas a1 is a safe
one. The action the agent has to pick depends on the chosen op-
timality criterion. If we use the standard expected value criterion
(see Eq. 1), which does not consider the budget, then the selection
would be a0, because it has the larger expected value, even though
it could be considered a risky option. The second subplot in Fig. 3
shows the CDF plot for each action and the third subplot shows
the β probability shown in Eq. 4. The optimistic expected value
described by Eq. 5 is shown in the fourth subplot. If the agent tries
to maximize its probability of not running out of resources by the
end of an episode, or if maximizes its optimistic estimate, it would
follow a policy derived from either of these subplots. As an example,
for b = 0 then arg maxa β = arg maxa Q̂opt = riдht , so the optimal
action is move to the right.

An interesting result of following the budget-aware optimistic
policy is shown in Fig. 4, where this policy is compared to a risky and
safe policy for 15 episodes, starting with a budget of zero. We would
expect that our budget-aware agent picked to be risky only when
its budget was enough to overcome the worst possible outcome.
And this behavior can be observed in the second subplot, which
shows the budget at the end of each episode. During the first two
episodes the budget-aware agent, labeled budget c51, chooses the
safe action, hence following the behavior of the safe agent. After the
second episode it determines it has enough resources to play risky
and chooses left with a bad outcome. Then it decides to move right
for the next two episodes, which can be seen because the slopes
of the budget-aware agent and the safe agent are equal. When it
has enough budget again it plays being risky and its accumulated
budget increases rapidly. In contrast, the risky agent ran out of
budget on the first episode and could not keep playing.

5

0

5

10
Reward

0 2 4 6 8 10 12 14
0

25

50

75

100 Accumulated Budget
safe
budget c51
risky

Figure 4: Top: the rewards received by an agent following an
optimistic budget-aware policy for 15 episodes, as estimated
by Eq. 5. Bottom: the corresponding accumulated budget.
The risky agent can run out of budget immediately, while
the budget-aware agent modifies its policy according to its
resources.

15 10 5 0 5 10 15
Budget

0

20

40

60

80

Ex
pe

ct
ed

 V
al

ue

0 left (risky)
1 right (safe)

Figure 5: Expected value of starting an episodewith a certain
budget (s2) calculated by value iteration, Eq 6. For example,
when the agent starts with a budget> −4 the value of taking
a safe action is higher.

5.4 Budget-aware value iteration
Fig. 5 shows the Q-values of having a budget in the range [−15, 15]
for the initial state s0 = S2, calculated using value iteration as
defined by Eq. 6. Selecting the action with the largest expected
q-value, using a max or softmax strategy, for each budget will lead
to our budget-aware policy, which we show in Fig. 6 for states S1
and S3 also. To show the relative differences between the expected
values for each action, Fig. 6 uses a softmax strategy. It can be seen
from the plot that regardless of the budget, if the agent is in state
s1, the optimal action is to move to the left. While in S2, the policy
indicates that for a budget in the range [-10, -4] the optimal action
is going to the left as well. This is because C51 estimated that the
expected return of moving to the right is 4, so, even if the current
budget is -4, according to Eq. 2, the best possible budget at the end
of the episode will be 0. So the best possible action is moving to the
left and aim to obtain the large risky reward of 10, so as to end with
a positive balance. Something similar happens in state S3: if the
agent "owes" four or more units of budget, the only way to obtain
a positive balance is moving to the left.

A remark worth noting is that in our test scenario both the op-
timistic and the value iteration estimates lead to the same policy,

AAMAS’18, July 2018, Stockholm, Sweden J. Serrano Cuevas et al.

S1 S2 S3
State

-15.0

-7.5

0.0

7.5

15.0

Bu
dg

et

Left (risky)

Right (safe)

Figure 6: Probability of selecting right (white/safe) or left
(black/risky) after running the VI budget-aware (Eq. 6) on
every state.

shown in Fig. 6. One can tell this by observing that the budget inter-
vals where the risky action expected values are larger, compared to
the safe one, are identical (see bottom subplot of Fig. 3 and Fig. 5).

6 DISCUSSION
As far as we know this work is the first one to use a distributional
approach to deal with the problem of budget and risk in RL, in
contrast with the traditional RL approaches that just add the bud-
get as part of the state representation. To do so we made some
assumptions to set a foundation for further research. Perhaps the
strongest assumption is the fact that our approach relies on the
existence of prior knowledge about the return distribution, in our
case this information was obtained from C51 algorithm’s output.
So, if the only way to acquire the knowledge to estimate the return
distribution is through direct interaction with the environment,
then a future research path is to develop an extension of this work
that considers budget during the learning process. However, if his-
torical information is available, e.g. a stock price time-series, then
we can use that offline information to train a categorical model
like C51 does, and then use our approach to take budget-aware
decisions. Another implicit assumption arises from the fact that
the agent attempts to completely avoid the risk of running out
of budget by the end of an episode, therefore one could say that
it has a risk-averse profile. However, what if the agent is willing
to expose itself to a certain amount of risk? Then, the policy of a
risk-seeking agent will be different. As an example, if the agent can
tolerate some risk it might choose to move to the left when having
a budget of 4 only if the probability of receiving the -5 return is
smaller than its risk tolerance. The benefits of adding as an input
the agent’s risk profile would be better perceived in scenarios with
more than two return outcomes. Finally, another possible follow-up
work is to convert BRAD into an iterative process: use C51 to learn
an intra-episode policy, and then improve it using value iteration,
just as it was described, to create an inter-episode budget-aware
policy. Then the value iteration output can be used to relearn a new
intra-episode policy and so on.

7 CONCLUSIONS
Safe reinforcement learning hasmany real-world applicationswhere
constraints and restrictions cannot be ignored [12]. One way to
model those is by means of a budget, which the agent is not al-
lowed to deplete during its interactions with the environment. In

this work we contribute with an approach to use distributional re-
turn information to take budget- and risk-aware decisions. We also
showed that in a grid-world scenario, a simple optimistic approach
is good enough to estimate a budget-aware policy. In other more
complex scenarios with a richer variety of returns this may not be
the case, and further experiments are needed. Finally, we pointed
out some possible future research directions such as online budget
learning and adding a parameter to account for risk tolerance.

ACKNOWLEDGEMENTS
This research has received funding through the ERA-Net Smart
Grids Plus project Grid-Friends, with support from the European
Union’s Horizon 2020 research and innovation programme.

REFERENCES
[1] Nicholas Barberis and Wei Xiong. 2012. Realization utility. Journal of Financial

Economics 104, 2 (2012), 251–271.
[2] Marc G Bellemare, Will Dabney, and Rémi Munos. 2017. A distributional perspec-

tive on reinforcement learning. Proceedings of the 34th International Conference
on Machine Learning (2017).

[3] Richard Bellman. 1957. A Markovian decision process. Journal of Mathematics
and Mechanics 6, 5 (1957), 679–684.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016).
arXiv:arXiv:1606.01540

[5] Javier García and Fernando Fernández. 2015. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16 (2015), 1437–
1480.

[6] Alexander Hans, Daniel Schneegaß, AntonMaximilian Schäfer, and Steffen Udluft.
2008. Safe exploration for reinforcement learning.. In ESANN. 143–148.

[7] Matthias Heger. 1994. Consideration of risk in reinforcement learning. InMachine
Learning Proceedings 1994. Elsevier, 105–111.

[8] Philippe Jorion (Ed.). 20006. Value at Risk. McGraw-Hill Professional Publishing,
USA.

[9] Hussain Kazmi, Fahad Mehmood, Stefan Lodeweyckx, and Johan Driesen. 2018.
Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning
based optimal control of hot water systems. Energy 144 (2018), 159–168.

[10] Deguang Kong, Xiannian Fan, Konstantin Shmakov, and Jian Yang. 2018. A
Combinational Optimization Approach for Advertising Budget Allocation. In
Companion of the The Web Conference 2018 on The Web Conference 2018. Interna-
tional World Wide Web Conferences Steering Committee, 53–54.

[11] Prashanth L A and Mohammad Ghavamzadeh. 2013. Actor-Critic Algorithms for
Risk-Sensitive MDPs. NIPS (2013).

[12] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, An-
drew Lefrancq, Laurent Orseau, and Shane Legg. 2017. AI Safety Gridworlds.
arXiv:1711.09883 (2017).

[13] Oliver Mihatsch and Ralph Neuneier. 2002. Risk-Sensitive Reinforcement Learn-
ing. Machine Learning (2002).

[14] Teodor Mihai Moldovan and Pieter Abbeel. 2012. Safe exploration in Markov
decision processes. International Conference on Machine Learning (2012).

[15] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel
recurrent neural networks. International Conference on Machine Learning (2016).

[16] Jonathan Serrano-Cuevas, Ansel Y Rodríguez González, Miguel Palacios Alonso,
Enrique MunÌČoz De Cote, and Luis Enrique Sucar. 2015. Distributed energy
procurement and management in smart environments. In Smart Cities Conference
(ISC2), 2015 IEEE First International. IEEE, 1–6.

[17] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[18] A Tamar, D Di Castro, and S Mannor. 2016. Learning the variance of the reward-
to-go. Journal of Machine Learning Research (March 2016).

[19] Long Tran-Thanh, Archie C. Chapman, Enrique Munoz de Cote, Alex Rogers,
and Nicholas R. Jennings. 2010. Epsilon-First Policies for Budget-Limited Multi-
Armed Bandits. AAAI (2010).

[20] Christopher Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8
(1992), 279–292.

[21] Evert Wipplinger. 2007. Philippe Jorion: Value at Risk-The New Benchmark
for Managing Financial Risk. Financial Markets and Portfolio Management 21, 3
(2007), 397.

[22] Jia Yuan Yu and Evdokia Nikolova. 2013. Sample Complexity of Risk-Averse
Bandit-Arm Selection.. In IJCAI. 2576–2582.

http://arxiv.org/abs/arXiv:1606.01540

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Reinforcement learning
	3.2 Distributional RL

	4 BRAD-RL
	4.1 Optimistic estimate
	4.2 Budget-aware value iteration

	5 Experiments
	5.1 Scenario description
	5.2 C51 training
	5.3 Learning budget aware policies
	5.4 Budget-aware value iteration

	6 Discussion
	7 Conclusions
	References

