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a b s t r a c t

The detection and subsequent reconstruction of incongruent data in time series by means of observation of
statistically related information is a recurrent issue in data validation. Unlike outliers, incongruent observations
are not necessarily confined to the extremes of the data distribution. Instead, these rogue observations are unlikely
values in the light of statistically related information. This paper proposes a multiresolution Bayesian network
model for the detection of rogue values and posterior reconstruction of the erroneous sample for non-stationary
time-series. Our method builds local Bayesian Network models that best fit to segments of data in order to achieve
a finer discretization and hence improve data reconstruction. Our local multiscale approach is compared against
its single-scale global predecessor (assumed as our gold standard) in the predictive power and of this, both error
detection capabilities and error reconstruction capabilities are assessed. This parameterization and verification
of the model are evaluated over three synthetic data source topologies. The virtues of the algorithm are then
further tested in real data from the steel industry where the aforementioned problem characteristics are met but
for which the ground truth is unknown. The proposed local multiscale approach was found to dealt better with
increasing complexities in data topologies.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many areas like industry, medicine and science generate large
volumes of data demanding validation. Validating data is a crucial
task before information analysis, interpretation and decision making.
Data validation encompasses processing techniques rendering quality
data guaranteeing optimal matching between real observations and the
repository. In other words, data validation is concerned with finding er-
roneous data in a data set and when appropriate, suggesting a plausible
alternative (Tamrapani and Johnson, 2003). The data validation process
involves a systematic assessment of compliance to a set of acceptance
rules defining data validity (Herrera-Vega et al., 2012). In general, the
validation process is domain specific (Gonzalez et al., 2012; Lamrini et
al., 2011). Due to its domain specific nature, data validation is carried
out not in few occasions by means of visual inspection, a time consuming
approach, exposed to subjectiveness and prone to errors. Yet regardless
of the particularities in each domain, a number of problems are recurrent
in data validation including detection of outliers, incongruent or rogue
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values and/or gaps or missing data, and reconstruction or estimation of
these missing or erroneous observations (Ibargüengoytia et al., 2013).

For some of these common data validation problems automation
has been attempted (Abraham and Box, 1979; Blake, 1993; Bao and
Dai, 2009; Hoo et al., 2002; Peng et al., 2012; Tsay, 1988; Walczak,
1995). These problems include the detection of observational outliers
(values at the extreme of the data distribution), the detection of signal
drift, level shift or abrupt changes altering the trend of the series
(innovation outliers Muirhead, 1986; Abraham and Box, 1979), the
detection of rogue values (unplausible values in the light of statistically
dependent information) and the reconstruction of missing data, among
others. Once an error has been detected, the validation process proceeds
with the data reconstruction. Reconstruction can capitalize on the
signal autoregressive information e.g., classical interpolation (Stoer and
Bulirsch, 2002) or time series analysis (Box et al., 2013), statistically
dependent information e.g., Lamrini et al. (2011) and Ibargüengoytia et
al. (2006), or a combination of both (Ibargüengoytia et al., 2013). The
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most beneficial reconstruction option depends on the interplay between
the variables characteristics in the dataset, including the within-variable
information (Ibargüengoytia et al., 2013).

This paper is concerned with the detection of incongruent values and
its reconstruction paying particular attention to datasets with temporal
variables (time series). Incongruent or rogue values are suspicious
values which may be in range and apparently agree with the signal
trend, but that contradicts the associated trend of statistically dependent
knowledge (Herrera-Vega et al., 2012). This makes their detection
particularly difficult if using only within-variable information. This is
inherently a multivariate problem. Previously, the detection of rogue
values has been addressed with Bayesian Networks (BNs) in the context
of sensor validation (Ibargüengoytia et al., 2006). This approach is a
global solution in which a BN is learned from the complete available
dataset and then data validity is checked against probabilistic plausi-
bility. Subsequent reconstruction utilizes probabilistic propagation to
estimate expected values for erroneous samples from associated values
in statistically related variables (Ibargüengoytia et al., 2006). Learning
the structure of the BN requires discretization of variables’ data ranges
into intervals that ultimately determines the detection rate and affects
the accuracy of the recovery of alternative values. For stationary signals
it is fair that these discrete intervals remain constant for the whole time
series. However, for non-stationary signals, as the statistical properties
of the series fluctuate, so should the intervals. In this way, dynamic
finer discretization can be achieved and consequently a more accurate
suggestion of alternative values should follow. Achieving similar dis-
cretization with a global solution will imply higher number of intervals,
which in turn will require conditional probability tables that will grow
exponentially. This quickly becomes computationally intractable.

This paper proposes a new local multiscale BN-based approach for
the detection and reconstruction of incongruent values in multivariate
datasets that we hypothesize to be more suitable for non-stationary
signals. The algorithm constructs a two level hierarchy of BN models
in which the superior level determines the dataset topology i.e., BN
structure, and the inferior level contains a set of submodels providing
interval discretizations that locally fits data distribution. In detecting
the error and reconstructing the new value, the critical step is deciding
the submodel that better fits the sample under scrutiny. The problem of
selecting the submodel is solved computing the conditional probability
of the observation given the submodel. The solution aims to enhance
error detection and suggestion of alternative values that offer a greater
congruence with the data series trend by computing conditional proba-
bilities locally. Validation is carried out over synthetic data. Explicative
power is evaluated by matching the reconstructed Bayesian structure
against the known synthetic ground truth. Predictive power is assessed
in its two flavours, error detection capabilities and error reconstruction
capabilities and compared against the global predecessor.

The detection process is then applied to a subset of the data coming
from the hardening furnace. Manufacturing of seamless steel tubes used
for operating at high temperatures and pressures requires the creep
resistance resulting from heat treatment. Heat treatment is a set of
metalworking processes that alter the mechanical characteristics of the
material by means of a sequence of heating and/or cooling to extreme
temperatures. For instance, one such heat treatment, annealing, changes
material properties such as strength and hardness. This manufacturing
process often yields a wealth of data with over 120 different variables
with very long series. This data is used to classify the steel tube as
compliant or not with resistance requirements. This classification is
strongly affected by the quality of the data. However, during data
acquisition and storage; defective sensing, noise affecting transmission
and transcription mistakes may corrupt the data. Thus, to achieve
a more accurate classification, data is put through a data validation
process. In this scenario, type I errors i.e., considering faulty an actual
correct value, are affordable as long as the suggested alternatives
are good approximations, emphasizing the critical importance of the
reconstruction. Performance is then compared to the previous existing
global solution (Ibargüengoytia et al., 2006).

Contribution is three-fold; (i) we provide a new solution with overall
better capabilities for complex data topologies, (ii) we establish some
rules of thumb for model parameterization both for the new approach
and its predecessor, and (iii) we verify and validate the approach
delimiting its incongruent data validation capabilities.

Organization of the paper is as follows. First, the computational
approach is presented, and the datasets both synthetic and real are
introduced. Then, to reduce the search space, an initial stage chooses sta-
tistically relevant model parameters. After fixing the model parameters,
a 5-fold validation exercises explores the face validity of the approach
evaluating predictive and explicative properties of the solution. The
model parameters are automatically learned from the data structure
and distribution to adapt to different problems and scenarios, and in
principle it can accommodate any number of variables (other than
memory limits) and it is not constraint to a particular data distribution
favouring scalability and generalizability. Finally, concurrent validity is
established over real data.

2. Preliminaries

2.1. Bayesian networks

A Bayesian Network (BN) (Koller and Friedman, 2009; Pearl, 1982)
𝑁 = (𝑋,𝐺, 𝑃 ) is a directed acyclic graph (DAG) 𝐺 = (𝑉 ,𝐸) with nodes
𝑉 = 𝑣1,… , 𝑣𝑛 and directed links 𝐸. The nodes of 𝐺 represent the set
of random variables 𝑋 of the domain and for each random variable
𝑋𝑣 ∈ 𝑋 a Conditional Probability Distribution 𝑃 of the form 𝑃 (𝑋𝑣|𝑋𝑝𝑎(𝑣))
is associated, where 𝑋𝑝𝑎(𝑣) are the set of parents of 𝑣.

The BN structure and its parameters (CPD) can be defined explicitly.
However, these can be learned automatically through a set of data.
Several algorithms are available for this purpose (Spirtes et al., 2000;
Steck, 2001; Chow and Liu, 1968). During the network structure learn-
ing, a statistical test between each pair of variables must be computed in
order to discover relations of conditional independence, a process that
is facilitated by the discretization of the variables’ ranges.

A defined (learned) BN represents a knowledge base which its
mayor purpose is to reason under uncertainty about observed events
in its domain. This reasoning is carried out by probabilistic inference
whose main task is to compute the posterior marginal probability of an
unobserved variable given a set of observed (evidence) variables.

2.2. Discretization

Discretization is the process by which the values of continuous
variables are converted to discretized, ordinal or nominal values. The
discretization process is non-trivial and many approaches exist (Kot-
siantis and Kanellopoulos, 2006; Friedman and Goldszmit, 1996). Two
classical strategies are equi-distance by which the variables’ data range
is split in a predetermined number of equally distant intervals, or equi-
frequency in which the splitting of the intervals ensure that each interval
holds the same number of samples. Recently, we proposed an interval
discretization technique based on a Gaussian mixture model (GMM)
(Herrera-Vega et al., 2012). This approach optimizes binning based on
the data distribution. In GMM-based interval discretization, the data is
assumed to be generated by a mixture of Gaussian distributions. Each
fundamental Gaussian is characterized by its mean 𝜇 and its variance
𝜎2, and the mixture is given by Eq. (1):

𝑝(𝑥) =
𝐾
∑

𝑘=1
𝜋𝑘𝑁(𝑥|𝜇𝑘, 𝜎2𝑘) (1)

where 𝐾 is the number of Gaussians considered, 𝑁(𝑥|𝜇𝑘, 𝜎2𝑘) represents
a Gaussian with mean 𝜇𝑘 and variance 𝜎2𝑘 and 𝜋𝑘 are the mixing
coefficients, i.e. weights for the Gaussians. The algorithm has 𝐾 as
a single parameter. The classical Expectation–Maximization algorithm
(Dempster et al., 1977) is used to optimize the fitting of the distributions.
The critical value discriminating any two contiguous intervals is chosen
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at the point in which the two involved fundamental Gaussians exhibit
equal probability. The main advantage of this approach is that every
interval corresponds to a specific distribution of the data. Among the
available aforementioned discretization strategies, we opted by the
latter based on Gaussian mixture relying on our expertise.

3. Related work

Several approaches that use Bayesian networks are presented by
different communities like anomaly detection (Chandola et al., 2009),
sensor validation (Sharifi and Langari, 2013), outlier detection (Zhang
et al., 2010) and more recently, the work presented in Hourbracq et
al. (2016) propose the use of a Dynamic Bayesian Network to learn
a non-stationary process to detect anomalies in a network system.
Some approaches are dependent on the application domain. Examples
are labelled databases (Das and Schneider, 2007), wireless sensor
networks (Janakiram et al., 2006), high pressure fluid-filled pipe type
cables (Tylman and Anders, 2006) or academic computer networks
(Siaterlis and Maglaris, 2004). The main idea in most of those systems
is the assumption of 𝑛𝑜𝑟𝑚𝑎𝑙 behaviour process data used for training
a probabilistic model, and inference is used to compare and measure
the correctness of incoming data. Other approaches has addressed the
problem of error detection by means of classifiers like the ones presented
in Doreswamy and Narasegouda (2014) and Chen et al. (2004) who uses
decision trees to detect faults or the work of Lemos et al. (2011) where
fault detection is performed by a fuzzy classifier.

3.1. Detection of rogue values with related variables: a global solution

In a nutshell, the idea of validating rogue values using related vari-
ables is as follows. Statistical dependencies among variables established
from the timecourse are exploited to isolate samples that flagrantly
i.e. significantly, violate the expected relations. The original algorithm
was proposed in Ibargüengoytia et al. (2006), and we briefly describe
it here. The process, schematically depicted in Fig. 1, starts with the
discretization of each variable range. In the original algorithm, without
losing generality, the discretization was achieved using an equi-distance
criterion. Then a BN is trained (structural learning) with domain entities
as nodes. This BN will naturally catch conditional dependences between
the variables in its arcs. Structural learning of the network can be
achieved by any existing algorithm, e.g. PC (Spirtes et al., 2000). Fig. 2
illustrates a BN where the domain variables (nodes) and the probabilistic
relation between them (edges) can be observed. Once the BN structure
is defined, it permits identification of rogue values using a two step
process; (i) identification of error candidates and (ii) isolation of the
real errors.

Phase I: Identification of error candidates. During the identifica-
tion of error candidates, suspicious records i.e. those failing to com-
ply with expected conditional probabilistic relations, are labelled
as candidate errors (CE) if the probability of the sample value in
the light of other variables’ values falls below a given significance
candidacy threshold 𝑝𝑐 . The probability of the sample value is given
by the posterior probability distribution of the variable which for
any variable can be established by isolating the variable Markov
blanket i.e., its parents, children and other parents of its children,
and propagating evidence on the net. Eq. (2) describes formally the
aforementioned process where 𝑋𝑖 is the variable to validate, 𝑂𝑖 is
the observed value for 𝑋𝑖, 𝑁 is the Bayesian Network Model, �⃗� is a
vector of current observed values and 𝑀𝐵𝑋𝑖

is the Markov Blanket
of the node 𝑋𝑖 for the given model and observation.

𝐶𝐸(𝑋𝑖;𝑁, �⃗�, 𝑝𝑐 ) =

{

TRUE If 𝑃 (𝑋𝑖 = 𝑂𝑖|𝑀𝐵𝑋𝑖
(𝑁, �⃗�)) < 𝑝𝑐

FALSE Otherwise.
(2)

The network is used to detect candidate errors estimating the poste-
rior probability of every node given the nodes in its Markov blanket.

Fig. 1. Schematic depiction of the data validation process for rogue value detection and
reconstruction. With a given set of data a model is learned which describes the relation
between variables of the domain. This model is able to detect suspicious errors (candidate
errors). In a second stage, candidate errors are analysed with other model to isolate real
errors. The learned model is used later to reconstruct every erroneous data.

After a complete cycle a set of apparent errors is obtained. In the
first step, some correct values may be flagged as a rogue if they have
been estimated with actual rogue values in other variables. Thus,
the second stage is necessary to isolate real errors from the set of
candidate ones.

Phase II: Isolation of the real errors. After the candidate errors
have been tagged, a new isolation BN is built. This subordinate
network contains all the nodes of the original network replicated
in two levels as illustrated in Fig. 3. The upper layer contains the
list of all nodes in the phase I network with an indication of R_ —
for (R)eal (a true error) — at front of the node’s name. Similarly,
the lower layer contains all nodes with names starting with A_ — for
(A)pparent (candidate error) —. Let 𝑆𝐴 be the set of variables with
apparent faults and 𝐸𝑀𝐵(𝑋) the Extended Markov Blanket (EMB)1

of a variable 𝑋. 𝑆𝐴 is compared with the table of the EMB for each
variable. The EMB of each node dictates the relation between nodes
across levels with different possible outcomes (Ibargüengoytia et al.,
2006):

∙ 𝑆𝐴 = ∅ there are no faults.
∙ If 𝑆𝐴 is equal to the union of several EMBs and the combination

is unique2 , there are multiple distinguishable real faults in all
the variables whose EMB are in 𝑆𝐴.

∙ Otherwise, there are multiple faults but they cannot be dis-
tinguished. Any variable 𝑋 whose EMBs is a subset of 𝑆𝐴,
i.e. 𝐸𝑀𝐵(𝑋) ⊆ 𝑆𝐴, could have a real fault.

The isolation network follows this procedure for all nodes.
For example, the 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎3 node possess an EMB

composed by the set:

𝐸𝑀𝐵(𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎3) =

{𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎4,

𝑃 𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎3,

𝑃 𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎2}.

(3)

In Fig. 3, the node 𝑅_𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎3 connects to the nodes
𝐴_𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎4, 𝐴_𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎3 and 𝐴_𝑃𝑒𝑟𝑚𝑎𝑛
𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎2 as shown in the second node from the left in Fig. 3.

1 The set of nodes in the Markov Blanket of a node plus the node itself.
2 A unique combination means that ∀𝑋𝑘 ≠ 𝑋𝑖 , 𝑖 = 1,… , 𝑛 then 𝐸𝑀𝐵(𝑋𝑘) ⋰⊆

𝐸𝑀𝐵(𝑋1)
⋃

𝐸𝑀𝐵(𝑋2)
⋃

…
⋃

𝐸𝑀𝐵(𝑋𝑛) and 𝐸𝑀𝐵(𝑋𝑗 ) ⋰⊆
⋃

𝑖≠𝑗𝐸𝑀𝐵(𝑋𝑖), 𝑗 = 1,… , 𝑛.
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Fig. 2. A BN model captures the relations between variables of the steel industry domain based on probabilistic theory. The connecting arrows indicate the direction of the influence
i.e., a change in a parent node alter the state of its child nodes. The process of manufacturing steel tubes requires a heating process that involves passing the tubes through the annealing
furnace where the tubes are heated at 900 ◦C. Following, the tubes are water cooled reducing their temperatures to 50–60 ◦C. Finally, the tubes go through the hardening furnace
where the tubes are heated again. Furnaces are divided in zones; the annealing furnace is divided in 5 zones, whereas the hardening furnace is divided in 4 zones. The shown variables
correspond to data from the hardening furnace. More specifically; 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒 is the total time that the tube is in the furnace, 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒𝑇 𝑖𝑚𝑒𝐴𝑟𝑒𝑎1, 2, 3 and 4 is the time that the
tube remains in each zone, 𝑇 𝑒𝑚𝑝𝐴𝑟𝑒𝑎1, 2, 3 and 4 are the temperatures in each zone of the furnace, and 𝑃 𝑖𝑟𝑜𝑚𝑒𝑡𝑟𝑦 corresponds to the temperature reached by the tube itself.

The parameters of this network are set according to the noisy-OR
(Ibargüengoytia et al., 2006) which is able to relate a manifestation
with a set of possible causes. The following formula (Eq. (4)) is
used to calculate the conditional probability tables for the isolation
network:

𝑃 (𝑒|𝑑) =
{

𝛱𝑖∈𝑇𝑑 If ¬𝑒
1 −𝛱𝑖∈𝑇𝑑 If 𝑒 (4)

where 𝑒 is an observed manifestation (i.e., a candidate error) and
𝑑 a set of possible causes (i.e., real errors). Basically, this equation
express the probability that an apparent error be the cause of a real
error present in other variable (or a set of variables).

To determine a real error through the isolation network, each
candidate error detected in the previous step, is instantiated as true,
and the rest of nodes are instantiated as false. Evidence is propagated
throughout the network and a posterior probability distribution for
every node in the upper level is established. In other words, when
all of the nodes belonging to a EMB of a node contain true as
candidate error from previous step, the propagation will produce
a high probability of real error and low in the others. Theory
(Ibargüengoytia et al., 2006) dictates that whenever there is a real
failure, this will generate one or more apparent faults. However,
it may be the case that none of the apparent faults are detected
e.g. their effects may conceal the effects of the other faults, with
the worst case scenario being that the algorithm fails to detect all
the apparent faults. Nevertheless, in these cases, if one variable in
the EMB of a faulty node is not detected as apparent faulty in the
first stage, including the same variable itself, the second propagation
will produce a high probability real fault as proven in our earlier
publication (Ibargüengoytia et al., 2006). And indeed, experimental
results suggests that not detecting the real fault is unlikely. Real
errors are identified by thresholding the probability of a node over
a significant isolation threshold 𝑝𝑖. In phase I, the aim is detecting

those data records containing at least one error. In phase II, the task
is deciding which are the offending variables.

Finally, suggestion of plausible values is performed through infer-
ence over the model. The original BN model used in phase I is used for
the data reconstruction. Feeding valid values of the related variables
into the model, reconstruction is done by propagating evidence through
the BN to the affected variable. However, due to the discretization
occurring prior to the structural learning process of the BN, the model
can only afford an interval estimation. The simplest solution to map
this interval to a single value is considering the middle point of the
interval. However, as the intervals grow larger, the middle point can
be far from a good estimation. The new approach presented in the next
section exploits the local distribution around a neighbourhood of the
sample under scrutiny to render a finer discretization.

4. Proposed method

4.1. Detection of rogue values with related variables: a local multiscale
solution

We now present the proposed approach for detecting rogue values.
This new approach taps the local distribution around a neighbourhood
of the sample being validated to obtain a finer discretization and thus
more accurate reconstruction of errors without increasing the model
complexity i.e., larger conditional probabilities density tables. In the
afore described global approach, following interval discretization, the
network structure and the conditional probabilities tables are learned
from the full set of data available for training. This new approach
extends the global model by building local submodels that whilst main-
taining the topology of the global network i.e., the structural statistical
relations are respected, the conditional probabilities are computed
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Fig. 3. Isolation network for BN data model in Fig. 2.

Fig. 4. (a) Upper (global) scale model which governs the model topology. The bars next to each node represents the associated data distribution. This model is learned from the full
dataset. (b) Local submodels for each of the temporal segments. Although the topology is inherited from the global model, the probabilities are recalculated using only the temporal
segment subseries.

from the distribution of the temporally local neighbourhood of the
signals. The structure of the submodels is kept invariant ensuring the
probabilistic dependencies are preserved. Fig. 4 illustrates the concept.

In order to construct the bottom level submodel, the main idea con-
sists of splitting the data series in temporal intervals. Fig. 5 illustrates
the difference in the data distribution for a given dataset between global
(full series) and local (subseries) approaches. Ideally, the time intervals
are defined such that the subseries are stationary within themselves, or
closer to it than the original full series, e.g., weakly stationary. This
should result in BN models particularly fitted to the signal different
behaviours.

Multiresolution differs from sliding window. Under a sliding window
approach only local information is given to the algorithm, whereas
under mutiresolution both global and local information reaches the
algorithm. The implications are clear; the multiresolution keep into
consideration the global information which a simple sliding window
would miss.

4.1.1. Time series splitting
In applying a local solution, there is a need for partitioning the

time series into local chunks. Besides the obvious manual partitioning,
several options are suitable for splitting the series:

Equi-spaced. The user indicates the number of intervals 𝜅, i.e., the
number of submodels, and the series is split in equal sized intervals.
This is the method chosen in Fig. 5.

Overlapped. Similar to the previous one, but the 𝜅 intervals are
allowed to overlap in their boundaries by a certain amount 𝜏, so
that changes are more progressive.

Sliding window. In the extreme case, a neighbourhood is built over
each sample using a sliding window of size 𝜈 and a model is built
for each sample. The sliding window may be constructed using any

classical kernel; rectangular, triangular, Gaussian, Welch, Hamming,
Hann, etc.

These options represent a compromise between accuracy and computa-
tional complexity. The preceding options are generic and do not address
the question of whether the original signal is non-stationary and the
individual resulting chunks are stationary. Segmenting a time series
into its locally stationary parts is a hard computational problem that
has already been addressed (Fukuda et al., 2004; Ligges et al., 2002)
for which practical exact solutions are yet to be developed considering
the order of a would-be exact solution 𝑂(𝑁𝑁 ) (Fukuda et al., 2004).
Although we hypothesize that a segmentation considering stationarity of
the time series will improve the results of the local approach proposed,
for this work we stick to more naive partitioning; i.e., equi-spaced.
For practical purposes, throughout this work the time series were split
arbitrarily into 8 intervals. The window size – not the number of them
– , e.g. the length in number of samples of the interval, is actually
relevant as this relates directly to the observations seen by the BN
during structure learning. If splitting breaks a stationary period into
two subperiods there is no harm unless the new chunks contain too few
samples to permit appropriate parameterization of the BN, but since
structure is learnt globally, this has an attenuated effect. On the other
end, as window size grows the local method approaches the global
method.

4.1.2. Upper scale model construction
The structure of the upper scale BN model is built considering

the full dataset (global scale) for training. The global BN determines
the probabilistic relations of the domain regardless of the temporal
dynamics. The network topology of the upper level root model is then
replicated for each segment and thus inherited by the submodels guar-
anteeing that the conditional dependencies are kept consistent through
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Fig. 5. (Best seen in colour) Global (red histogram) versus Local multiscale (green histograms) BN model construction. Under the global approach the BN learns from the distribution
of the data ranges of the full series. Under the local multiscale approach, BN submodels are learn from the data distributions of the local temporal segment. The example shown uses
equi-spaced splitting of the time series. In both cases, the abscissa axis represents the timecourse of the variables in terms of number of samples. The histogram of the series is represented
in the ordinate axis. The horizontal dashed lines indicates the interval partition obtained for each variable in this case obtained using equi-distance discretization. It can be appreciated
how the local discretization flexibly adjusts the size of the intervals according to the local properties of the subseries. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the local submodels. However, each local BN submodel probabilities are
recalculated to adapt to the local segment, where each one is discretized
applying the same discretization method as in the global model.

4.1.3. Submodel selection
The selection criteria chooses the network submodel with higher

probability of producing the observation e.g., the 𝑡th record
⟨𝑥1𝑡 , 𝑥

2
𝑡 ,… , 𝑥𝑛𝑡 ⟩ with 𝑛 variables.

In this sense, let 𝑂 be an observation or data record including the
samples across all domain variables. 𝑂𝑡 is the observation at time 𝑡.
The probability that observation 𝑂𝑡 is generated by a submodel 𝑚 is
given by 𝑃 (𝑂𝑡|𝑚). It is possible to approximate this probability from
the individual probabilities that value 𝑥𝑖𝑡 observed for variable 𝑋𝑖

belongs to one of the intervals for network node 𝑋𝑖. Assuming statistical
independence of the samples (not the time series):

𝑃 (𝑂𝑡|𝑚) =
∏

𝑋𝑖
|𝑖=1…𝑛

𝑝(𝑎𝑘 ≤ 𝑥𝑖𝑡 ≤ 𝑏𝑘) (5)

where 𝑎𝑘 and 𝑏𝑘 are the lower and upper boundaries of the 𝑘th interval
for variable 𝑋𝑖 where the value 𝑥𝑖𝑡 befalls.

Upon deciding on the submodel, data validation check proceeds as
per the original algorithm with the identification of error candidates
first, and isolation of real errors afterwards. Since all submodels share
the same topology, it is possible to generate a single isolation network
during the last step. Instantiation of the nodes in the isolation network is
carried out according to the chosen submodel for evidence propagation
and real error detection.

4.1.4. Data reconstruction
Analogously to the global solution, suggestion of plausible values

is performed through inference over the submodel that best represents

the observed data. The selection of the submodel is done using the
same criterion of obtaining the probability of the observation given the
model, 𝑃 (𝑂𝑡|𝑚). However, upon considering that the variable value to be
estimated may be affected by an error, the probability of this is neglected
in the computation, and only the value of the related variables are
considered. In this sense, the submodel exhibiting higher probability of
generating the observation defined by the values in the Markov Blanket
of the estimated variable are used to compute the most likely value. As
this corresponds to an interval, the numeric value proposed is according
to the mid point of the interval.

4.2. Simulation environment

Validator is a Java based platform that our group has built for generic
data validation (Herrera-Vega, 2011) (see Fig. 6). This environment is
not attached to any specific domain. It is capable of outlier detection,
as well as detection of sudden changes, and we have incorporate the
solutions presented here for the detection of rogue values using related
variables (both global and local multiscale). All experiments that follow
have been carried out in Validator which is available online at: http:
//haro.inaoep.mx/~validator.

5. Validation on synthetic data

In order to verify the behaviour of our approach against a known
ground truth, synthetic data topologies were generated using well
known time series models. A synthetic topology is a predefined network
structure for which the relation among node entities is set in terms
of generative time series models. These topologies yield a set of time
series with direct and indirect relations among variables, and with
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Fig. 6. Screenshot of the graphical user interface (GUI) of the data validation tool validator. The GUI shows the model construction tab with various components like: variable list,
statistics information, histogram and time-series graphs, discretization algorithms and data manipulation tools.

single parent and multiple parent cases. In total, three synthetic data
topologies were generated (Fig. 7) with 2000 samples for each variable.
Each topology defines a particular relation of interest between its nodes.
The details are explained in Appendix.

Table 1 summarizes the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
tests for the synthetic topologies. Note that not all series in the syn-
thetic topologies are (level) non-stationary, but the topologies go with
increasing difficulty.

5.1. Statistical analysis

Statistical analysis has been carried out in 𝑅 (R Core Team, 2013).
The KPSS test (Kwiatkowski et al., 1992) is used for testing a null
hypothesis that an observable time series is stationary around a deter-
ministic trend. Effect sizes and corresponding 𝑧-scores have been used to
establish the effect of thresholds for algorithm stages I (identification of
candidate errors) and II (isolation of real errors). A two-way ANOVA
model has been built for evaluating the parameterization of models,
and in particular for establishing the discretization strategy and the
number of intervals for the discretization. Although these parameters
are nested i.e., the number of intervals obviously depends on the
discretization strategy, for statistical modelling we unfolded this nesting
by considering 3 levels of intervals; 5, 10 and automatic (which is
manually set to 15 in the case of equifrequency) and considered a
plain two-way ANOVA. The unfolding of a nested factor is equivalent
to considering a plain multifactorial design (number of intervals 𝑥
discretization strategy). No post-hoc pairwise analysis followed, but
instead we rely on boxplots representation for decision.

Table 1
Results of the variable-wise KPSS test of signal stationarity in the synthetic topologies.

For Synthetic topology 1

N1: KPSS Level = 0.126 𝑝 > 0.1
N2: KPSS Level = 3.7758 𝑝 < 0.01∗∗

N3: KPSS Level = 0.0684 𝑝 > 0.1
N4: KPSS Level = 0.071 𝑝 > 0.1

For Synthetic topology 2

N1: KPSS Level = 15.632 𝑝 < 0.01∗∗

N2: KPSS Level = 17.2546 𝑝 < 0.01∗∗

N3: KPSS Level = 0.126 𝑝 > 0.1
N4: KPSS Level = 6.696 𝑝 < 0.01∗∗

For Synthetic topology 3

N1: KPSS Level = 16.0362 𝑝 < 0.01∗∗

N2: KPSS Level = 16.6984 𝑝 < 0.01∗∗

N3: KPSS Level = 12.7894 𝑝 < 0.01∗∗

N4: KPSS Level = 15.3948 𝑝 < 0.01∗∗

N5: KPSS Level = 15.3923 𝑝 < 0.01∗∗

** Indicates a highly significant value (𝑝 < 0.01). * Indicates a significant value (𝑝 < 0.05).
Truncation lag parameter = 10 in all cases.

5.2. Parameterization and verification of the model

As already mentioned, 2000 samples were simulated in the synthetic
topologies and local approach always used 8 equally spaced segments
for partitioning the series. In this first stage, a single fold test is run
over the synthetic data in order to find a combination of parameters
that shows a promising behaviour across both the global and local
approached. This shall avoid an exhaustive parameter space search
during the second stage in which face validity is established. This test
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Fig. 7. The three synthetic topologies simulated for model verification and face validity. Each node in the synthetic topology is a combination of its own seed plus maybe some influence
from the other nodes (see Appendix). Direct and indirect relations, as well as single parent or multiple parent relations are considered.

Table 2
Discretization of the parameter search space for model verification. Tested parameterizations are all the possible combinations from these
values. In each case, both a global and a local multiscale model were built.

Parameter Tested values

Candidacy threshold 𝑝𝑐 0.0001, 0.001, 0.01 and 0.05
Isolation threshold 𝑝𝑖 ∈ [0.5, 1] 0.51, 0.6, 0.7 and 0.8
Discretization strategy Equi-distance, equi-frequency and GMM
Number of intervals (nested to discretization strategy) Equi-distance: 5, 10 and Automatic Equi-frequency: 5, 10 and 15 GMM: 5,

10 and automatic

also helps to establish the explicative power of the model. Synthetic
data was split into 70% training set and 30% test set with the samples
chosen at random. Note that a static Bayesian network as the ones
underlying the solutions does not take time into account and thus the
temporal distribution of the samples does not affect the construction
of the models. For this single fold, global and local models were trained
and tested using specific combination of parameters including algorithm
stages’ thresholds 𝑝𝑐 and 𝑝𝑖, discretization strategy and number of
intervals, in particular, all possible combinations of the parameter
values in Table 2. Evaluation was based on sensitivity and specificity
analysis (Eqs. (6) and (7)) and the derived area under the curve (AUC)
over the receiver operator curve (ROC) space.

Sensitivity = True Positives
True Positives + False Negatives (6)

Specificity =
True Negatives

True Negatives + False Positives . (7)

5.2.1. The effect of initialization
Maximum sensitivity for the candidacy threshold 𝑝𝑐 was achieved

when parameter was valued 0.0001 and 0.001 was below 0.1 and
corresponding AUC was below 0.55 which is close to random. Thus
these values can be considered as too stringent, and can be discarded
from further consideration. With respect to values 0.01 and 0.05, AUC
increased slightly (maximum reaching 0.57 and 0.63 respectively) with
no significant difference between these two.

Effect sizes (𝜇𝑙𝑜𝑐𝑎𝑙 − 𝜇𝑔𝑙𝑜𝑏𝑎𝑙)∕𝜎𝑔𝑙𝑜𝑏𝑎𝑙 over the AUC were computed
between every pair of values given to the isolation threshold 𝑝𝑖 across
topologies and models. The maximum size effect corresponded to the
comparison between values 0.51 and 0.8 as expected, and was found
to be 0.18 which corresponds to a non-significant 𝑝-value 𝑝 = 0.42.
This suggests that the choice of the isolation threshold 𝑝𝑖 is virtually
irrelevant for the final detection of errors, which makes the approach
robust to this parameter. Tables 3 and 4 summarizes the results of the
initialization stage.

5.2.2. The effect of discretization
Discretization involves two important decisions. First, the binning

approach as discussed in Section 2.2. Then, nested to this decision, is the
number of intervals used for this binning. Fig. 8 shows the boxplots for
the AUC over the two factors; binning approach and number of intervals.
The two way ANOVA model results summarized in Table 5 suggests
that both the effect of the binning strategy and the number of intervals

Table 3
Summarized results for initialization of parameter 𝑝𝑐 .

Parameter Values Sensitivity Specificity AUC

𝑝𝑐 0.0001 0.006 ± 0.008 0.99 ± 0.008 0.50 ± 0.004
0.001 0.015 ± 0.018 0.99 ± 0.001 0.50 ± 0.008
0.01 0.034 ± 0.041 0.99 ± 0.007 0.51 ± 0.017
0.05 0.059 ± 0.077 0.98 ± 0.022 0.52 ± 0.029

Table 4
Summarized results for the initialization of parameter 𝑝𝑖.

Parameter Values Effect Size

𝑝𝑖

0.51–0.6 0.02
0.51–0.7 0.15
0.51–0.8 0.18
0.6–0.7 0.13
0.6–0.8 0.16
0.7–0.8 0.03

were found to be highly significant (𝑝 < 0.001). Based on the previous
boxplots, the equi-distance binning with automatic partitioning was
regarded as the most suitable parameterization.

5.2.3. Scalability with increasing data complexity
We also questioned how do the models deal with the increasing

complexity of the topologies. Effect sizes comparing the difference in
performance between the two models over the AUC were computed
for each topology. In Fig. 9, it can be appreciated the monotonic trend
suggesting how the local multiscale model better deals with increasing
complexity of the data topology, as the effect size i.e., difference
between the two models, increases with increasing complexity of data.

Finally, the defined configuration of parameters was used to measure
the performance of the global and local methods over the three synthetic
topologies. Table 6 shows the sensitivity, specificity and area under the
curve (AUC) of the ROC curve. A t-test was conducted to compare the
results of Table 6 between the AUC of the global and local models. The
t-test suggested that there was not significant difference for topology 1
(𝑡(269.6) = 0.775, 𝑝 = 0.78046) but there were a significant difference for
topology 2 (𝑡(173.9) = −2.469, 𝑝 = 0.0073) and 3 (𝑡(169.9) = −6.806, 𝑝 =
0). So, as can be seen, the AUC for the local model for topologies 2 and 3,
surpass the error detection capabilities of the global model. These results
are in agreement with the findings stated in Fig. 9 that local model deals
better with complex data topologies.
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Table 5
Two way Type I ANOVA results for assessing the effect of discretization.

Factor Df Sum. Sq. Mean Sq. F value 𝑃𝑟(> 𝐹 )

Binning strategy 2 0.02371 0.011853 28.48 2.49e−12
Num. intervals 2 0.03468 0.017339 41.66 <2e−16
Binning strategy: Num. intervals 4 0.03065 0.007664 18.41 5.83e−14
Residuals 423 0.17605 0.000416

Both the effect of the binning strategy and the number of intervals were found to be highly significant (𝑝 < 0.001). Df: degrees of
freedom; Sum. Sq.: Sum of squares; Mean Sq.: Mean square.

Table 6
Error detection performance of the global and local methods evaluated on each synthetic data topology.

Topology Method Sensitivity Specificity AUC 𝑝-value

T1 Global 0.048 ± 0.058 0.989 ± 0.012 0.519 ± 0.025 0.780T1 Local 0.055 ± 0.064 0.978 ± 0.027 0.517 ± 0.019

T2 Global 0.019 ± 0.030 0.996 ± 0.009 0.508 ± 0.010 0.007*
T2 Local 0.038 ± 0.082 0.991 ± 0.019 0.515 ± 0.032

T3 Global 0.037 ± 0.021 0.995 ± 0.004 0.516 ± 0.009 0.000*
T3 Local 0.084 ± 0.076 0.986 ± 0.014 0.535 ± 0.031

* Indicates a significant value (𝑝 < 0.05).

Fig. 8. Parameterization of the discretization strategy and subsequent choice on the
number of intervals. Three discretization algorithms with different number of intervals
were evaluated. The boxplots points to Equidistance discretization with automatic number
of intervals to be the binning strategy with the highest AUC.

5.3. Computational complexity

The computational complexity of the proposed method needs to be
split in two parts: the models learning stage and the validation stage.
In the first one, the complexity is composed by the time used in the
structure and parameters learning of the BN. As the structure is learned
with the PC algorithm this takes (in the worst case) a time in (𝑝𝑞)
(Kalisch and Bühlmann, 2007) where 𝑝 is the number of variables, 𝑞
the maximum number of vertex adjacent to any vertex in the graph.
The parameters are learn, with the EM algorithm, with a time in
(𝑙 + 𝑘𝑙2) (Chen et al., 2008), where 𝑙 is the number of samples and
𝑘 the number of intervals of each variable. Then, to learn the global
model the complexity is 𝑂(𝑝𝑞) + 𝑂(𝑙 + 𝑘𝑙2). As the submodels share the
same structure of the global model, the time to define the structure
of the submodels is constant i.e. 𝑂(1), but the parameters learning

Fig. 9. Effect size measuring the difference in response by the two models with regard to
the increasing complexity of the topology. Note that the dependent variable in the plot is
the effect size already implicitly expressing the relation among the two models; the global
and the local.

should be repeated 𝑁 times (one for each segment of the time series)
over a set of size 𝑙∕𝑁 samples, so the time to learn the submodels is
𝑂(1) + 𝑁 ⋅ 𝑂((𝑙∕𝑁) + 𝑘(𝑙∕𝑁)2) In the case of the validation stage the
computational time is basically the time employed by the probability
propagation algorithm, which is known to be NP-Hard (Roth, 1996). The
local approach adds to this the time related to model selection, which
is linear over the number of submodels 𝑂(𝑁). Then, the complexity for
the validation process with the local submodels is increased linearly by
the model selection.

6. Application domain: Steel industry

We apply the new data validation technique to a dataset coming
from the steel industry in the manufacturing of seamless steel tubes.
The dataset corresponds to the subset of 10 variables involved of the
hardening furnace stage of the tube manufacturing process. In the
hardening furnace, under differential hardening, different areas of the
furnace provides separate heat treatments. The hardening process at
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Table 7
Results of the variable-wise KPSS test of signal stationarity.

Variable 𝑝-value

Pyrometry 𝑝 < 0.01**

TemperatureArea1 𝑝 < 0.01**

TemperatureArea2 𝑝 < 0.01**

TemperatureArea3 𝑝 < 0.01**

TemperatureArea4 𝑝 < 0.01**

TotalTime 𝑝 < 0.01**

PermanenceTimeArea1 𝑝 = 0.04061*

PermanenceTimeArea2 𝑝 = 0.05843
PermanenceTimeArea3 𝑝 = 0.04314*

PermanenceTimeArea4 𝑝 = 0.02301*

** Indicates a highly significant value (𝑝 < 0.01).
* Indicates a significant value (𝑝 < 0.05).

hand separates four areas of furnace and thus it contains 4 temperatures
from each area, 4 exposure times i.e., one per area, 1 total time of the
tube in the furnace and 1 pyrometric measurement.

As we hypothesized that the suitable scenario for application of
the local multiscale solution is in non-stationary signals, we tested all
variables for stationarity using the KPSS test. The results are summarized
in Table 7. All variables except PermanenceTimeArea2 exhibited non
stationary behaviour. Upon splitting the signals into intervals some
shifts in statistical properties responsible for this become apparent (see
Fig. 10).

6.1. Performance in the error detection

The ground truth of the errors present in the dataset is unknown.
Although the data will naturally be affected by noise, we do not know
neither the distribution of this noise nor whether any of the sensors
responsible for the data corresponding to each variable did failed or
not. Thus, in order to explore the error detection capabilities of the
multiscale approach, for this exercise we assume that our dataset is
error-free and manually introduce additional errors in the dataset that
will act as our ground truth. Note that this mean that we will be truly
dealing with a higher noise ratio than actually reported, but we have
already analysed the approach over synthetic noise-free data. In all
cases, 70% of the original dataset was used for training from which the
structure of the BN is learned and 30% for testing. We test the solution
in three different scenarios:

∙ White Noise Contamination. Addition of white noise to the test
set is achieved by adding/subtracting a random value minor than
5% of the signal standard deviation to the sample value. Added
noise was sampled from a Gaussian distribution. A total of 5%
of the test data was altered in this way. After noisy signals were
constructed in this way, both the global and the local multiscale
solutions were applied to this noisy test set for detection of errors.

∙ Shifting to extreme values (5% of test data affected). To
simulate errors, the values of those samples affected by errors
was substituted by the most extreme signal value opposite to the
sample value. Of the discrete values of the variable, in order to
alter the value of the sample, the value is shifted to the furthest
extreme of its interval; whether the upper or lower depending
on the distance to the interval boundary. Note that a substitution
for a value beyond this point will be considered an outlier, not
a rogue value. In this scenario, a total of 5% of the test data was
altered in this way, and the data affected was picked randomly.

∙ Shifting to extreme values (100% of the test records affected,
i.e., one variable of every record was modified, that is 10% of
test data affected). Test data was altered in the same manner
than before, but ensuring that each record contain one and only
one error. That is 100% of the records and 10% of the test set are
affected.

Table 8
Area under the curve (AUC) of the ROC analysis for the Global and Local Multiscale ap-
proached for the three studied scenarios.

Scenario Phase I Phase II

Global Local Global Local

White Noise Contamination 0.5924 0.5991 0.5017 0.5031
Shifting to extreme values (5%) 0.9702 0.8262 0.5527 0.5026
Shifting to extreme values (10%) 0.9812 0.9966 0.523 0.5057

In all cases the results are compared to the error detection rates achieved
by the global solution and the structure of the BN is learned using the
PC algorithm (Spirtes et al., 2000).

Results are presented using the receiver operating characteristic
(ROC) analysis. The area under the curve (AUC) summarizes the error
detection rate. The AUC is a very standard way of summarizing the
ROC curve; basically, the available points of the curve given by the
pairs of ⟨sensitivity, specificity⟩ are joint and the integral (by trapezoidal
approximation) is calculated. In each case, the results in both stages of
the error detection process are reported.

6.1.1. White noise contamination (5% error rate)
Fig. 11 summarizes the error detection rate for both approaches

in the presence of white noise in both error detection phases. The
local multiscale approach conduct a more aggressive error detection. It
captures more true positives at the expense of increasing Type I errors.
Which as discussed earlier are affordable if suggested alternatives are
good approximations, which we will show it is the case.

6.1.2. Shifting to extreme values (5% error rate)
The error detection rate for both approaches in the presence of this

kind of simulated errors in both phases are summarized in Fig. 11. In
this case the global approach reached a detection of the 95% of true
positives for phase I with a high 𝑝-value threshold (0.05). On the other
hand, the local approach reached the same true positives rate with the
lowest 𝑝-value threshold but increasing false positives.

6.1.3. Shifting to extreme values (10% error rate)
The error detection rate for both approaches in the presence of this

kind of simulated errors in both phases are summarized in Fig. 11. In
this test, the global approach increases the true positives detection when
𝑝-value increases. The maximum rate reached by the global model is
87%. The local approach reports a detection greater than 95% for the
lowest 𝑝-value threshold.

Finally, Table 8 summarize the AUC for both approaches (Global
and Local multiscale) across both phases of error detection and for all
scenarios. As shown in table, both approaches report a subtle difference
for the test set affected with white noise. For the second scenario
the global approach reported a higher AUC. Finally, the last scenario
shows a AUC higher for the local approach than the obtained for the
global. Values in Fig. 11 and Table 8 for stage II have to be interpreted
carefully because Phase I has already certainly made a good job in telling
candidate errors, which are the only that reach the second stage. This
means it is not an overall random output, but only that none of the
approaches can easily decide which of the variables is responsible for
the error in the case of white noise, and that the only thing that they
can tell with some certainty is that there is an error. In other words,
white noise is particularly challenging for this approach to decide the
offending signal but no so much to decide whether there is an error.
Moreover, in general dealing with determining the real faulty value,
is a more difficult task that the one for stage I since among the set of
suspicious values there could be more than one real error, obfuscating
the final decision and hence affecting the ability of both approaches to
detect incongruent values. The bottom line is that both method exhibit
similar tolerance to noise in the data. Table 9 further shows the results
over the real data.
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Fig. 10. Distribution of the different segments across the dataset variables. Each colour corresponds one of the 8 segments. The varying statistical properties of the segments in most
variables can be appreciated.

Table 9
Error detection performance of the global and local methods on the application domain dataset for phases I and II of the algorithm.

𝑝𝑐 value Phase Method TP TN FP FN Sensitivity Specificity

0.01
I Global 21 137 5 129 0.140 0.964

Local 107 66 76 43 0.713 0.464

II Global 1 2757 13 149 0.006 0.995
Local 4 2683 87 146 0.026 0.968

0.05
I Global 43 127 15 107 0.286 0.894

Local 121 55 87 29 0.806 0.387

II Global 2 2743 27 148 0.013 0.990
Local 7 2660 110 143 0.046 0.960

6.2. Data reconstruction

After error detection, the data validation process continues to yield
an alternative value which can substitute the error value. In order to test
the capabilities of the local multiscale approach for data reconstruction
we carried out a very simple test. We consider the whole series of one
variable at a time to be erroneous, and we reconstruct that variable
series only from the information available from the other variables. We
repeat the process for each of the variables. Again, we compare the
results against the outcome from the global approach.

Fig. 12 illustrates an exemplary reconstruction for one of the vari-
ables, that is TemperatureArea4. The local multiscale solution clearly
achieves a more faithful reconstruction than the global approach.
Although the global approach reconstruction exhibits the right trend,
it lacks detail. In contrast, the local multiscale solution not only exhibits
the right trend but also achieves finer detail. Table 10 summarizes the
mean absolute errors during reconstruction across all variables. The
reconstruction stage does not depend on the parameters of detection
stages (𝑝𝑐 or 𝑝𝑖). For reconstruction, the Global Bayesian network or
the selected Local Bayesian network are used to propagate the evidence
through the BN to the affected variable to estimate the most probable
value.

7. Discussion

Both approaches present good detection rates for phase I, identifica-
tion of error candidates, i.e., detection of suspicious records. However,

Table 10
Mean absolute error in sample value reconstruction per variable. Statistical comparison
was made using a 𝑡-test.

Variable Global Local p-value

Pyrometry 2.239 1.577 𝑝 < 4.216𝑒 − 13
TemperatureArea1 9.584 4.479 𝑝 < 2.2𝑒 − 16
TemperatureArea2 4.352 2.077 𝑝 < 2.2𝑒 − 16
TemperatureArea3 1.765 1.081 𝑝 < 2.2𝑒 − 16
TemperatureArea4 3.079 2.529 𝑝 < 2.2𝑒 − 16
PermanenceTime 9.190 5.437 𝑝 < 2.2𝑒 − 16
PermanenceTimeArea1 7.977 2.962 𝑝 < 2.2𝑒 − 16
PermanenceTimeArea2 4.072 2.646 𝑝 < 2.2𝑒 − 16
PermanenceTimeArea3 3.968 2.732 𝑝 < 2.2𝑒 − 16
PermanenceTimeArea4 4.261 1.449 𝑝 < 2.2𝑒 − 16

this detection rates drops sharply for the phase II, isolation of real errors
i.e., pinpointing the erroneous variable from the record. This situation
can arise from the complexity of the detection network, which because
it is densely connected. Since the best scenario to isolate a real error
is when the set of variables with apparent errors corresponds to the
Markov Blanket of the variable with the real error (Ibarguengoytia et
al., 1997), with a densely connected BN the error propagates to all the
network and results in all variables being part of the Markov blanket.

The local multiscale approach offers a finer discretization without
the exponential growth of the conditional probability tables. There is
however a price to pay for the finer discretization and better recon-
struction achieved with the local submodels. The lower scale models
are imposed a network structure that may not correspond to the local
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(a) Phase I. (b) Phase II.

(c) Phase I. (d) Phase II.

(e) Phase I. (f) Phase II.

Fig. 11. Detection of candidate errors for the steel industry domain. (a) ROC curve for different configurations of the 𝑝-value (0.0001; 0.001;0.01;0.05) for Phase I (b) ROC curve for
different configurations of the 𝑝-value (0.0001; 0.001;0.01;0.05) for Phase II (the zoomed window shows the details of the curve). The top row (a) and (b) — correspond to error detection
under white noise contamination. Middle row (c) and (d) — correspond to error introduction of extreme values (5%). Bottom row (e) and (f) — correspond to error introduction of
extreme values (10%).

properties of the signals. The consequence is a higher number of false
positives (global 28.7 ± 58.8, local 65.12 ± 135.34). Another reason for
this is the finer discretization in the local model so that a small change
in a data can move it to another interval. This effect may limit the
applicability of the new model to scenarios in which Type I errors are
acceptable as long as the suggested reconstruction is close enough to the
real value, which is the case in the domain at hand.

According to our motivating aim, the reconstruction achieved with
the local multiscale approach surpasses the reconstruction achieved by
the global approach. Whilst certainly a higher number of intervals in the
discretization of the global scale will result in a reconstruction with finer
detail, as it has already been mentioned, higher number of intervals will
require larger conditional probability tables which can be prohibitive for
the global approach.

A different avenue to improve data estimation may be using a
dynamic Bayesian network to consider past and future data as evidence

in the model, as for instance using dynamic Bayesian networks (Dagum
et al., 1992), temporal nodes Bayesian networks (Hernández-Leal et
al., 2013), or autoregressive Bayesian networks (Ibargüengoytia et al.,
2013). The choice of model may be dictated by the particularities of
the domain. In the problem at hand, it is plausible that the underlying
process is non-stationary, but importantly the structure encoding the
statistical dependencies among variables can be expected to remain
unchanged. For instance, two temperature sensors will maintain their
dependent records even if the process varies with time. In other words,
the temperature of the process may change in time altering the statistical
properties of the sensor records, but they since both sensors will be
analogously affected they should remain dependent throughout the
process. However, this is a particular scenario of this domain and cannot
be assumed a good proxy of other problems in different domains, where
changes in the statistical properties of the records may be accompanied
by changes in the network structure.

12
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Fig. 12. Data reconstruction capabilities. The original variable TemperatureArea4HT (top) was completely reconstructed from statistically related information in the other variables
only. The reconstructions achieved by the global approach (2nd row) and the local multiscale approach (3rd row) are shown. Abscissa represent samples of the time series and ordinate
represent signal value. Bottom: The greater detail achieved by the local approach (red) over the global approach is demonstrated by the higher 𝑟2 of the regressive linear model. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8. Conclusions and future work

A new local multiscale BN based approach has been presented for the
detection of rogue values in time series when statistically dependent
information is known. Contrary to the existing global approach, the
local multiscale solution aims to adapt the interval discretization to
the neighbourhood of the sample for finer reconstruction. The new
approach matches the detection capabilities of the global approach but
succeeds in obtaining a significantly more accurate reconstruction. The
price to pay is computational time, as one submodel must be learned
for each time interval in addition to the global model which determines
the submodels topology, as well as limiting the applicability, due to
the higher number of false positives. Furthermore, the selection of

the submodel for validation and suggestion of alternative values add
additional computational burden.

The number of scales for the local model in this paper has been fixed
to two (the global and one local level of the submodels). However, it is
trivial to extend to a more generic solution with higher number of levels
to account for periods of stationarity.

In the future we plan to split the signal in an automatic way to learn
the local models. This, based on a balance between: (1) the minimum
data required to learn an appropriate model, (2) perceptible changes
in the time-series behaviour and importantly (3) considering partitions
aware of the stationarity of the resulting parts. We think that this can
improve the error detection rate and signal reconstruction in the local
model approach.
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Appendix. Synthetic data topologies

Three sets of synthetic data were generated. Each set has been
generated according to the topologies showed in Fig. 7 and the details
of this are described as follow.

First, a number of signal seeds equal to the number of nodes
on the topology are defined. These seeds are expressed in terms of
existing univariate time series models such as AutoRegressive Moving
Average (ARMA), AutoRegressive Integrated Moving Average (ARIMA)
or seasoned ARIMA (sARIMA). The notation 𝐴𝑅𝑀𝐴(𝑝, 𝑞) refers to the
ARMA model with 𝑝 autoregressive terms and 𝑞 moving-average terms
in Eq. (8):

𝑆(𝑡) = 𝜖𝑡 +
𝑝
∑

𝑖=1
𝛼𝑖𝑆(𝑡 − 𝑖) +

𝑞
∑

𝑖=1
𝛽𝑖𝜖𝑡−𝑖 (8)

where 𝛼1,… , 𝛼𝑝 are parameters of an Autoregressive model(AR),
𝛽1,… , 𝛽𝑞 are the respective parameters of a Moving Average model (MA)
and the random variable 𝜖𝑡 is white noise (Box et al., 2013). The notation
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) denotes an ARIMA model, which is a generalization of
an ARMA model. In the ARIMA model, the parameters 𝑝, 𝑑 and 𝑞 are
non-negative integers where 𝑝 and 𝑞 are the same like in ARMA models
and 𝑑 is the integrated part (Makridakis and Hibon, 1997). Finally, a
seasonal effect can be added using an sARIMA model. An sARIMA model
has two pairs of parameter triplets (𝑝, 𝑑, 𝑞), the first triplet for the ARIMA
model, and the last one for the seasonal component.

Once the seeds are defined, these are combined so that each node
in the synthetic topology is a combination of its own seed plus maybe
some influence from the other nodes as depicted in Fig. 7. Following,
the generated topologies are described.

Topology 1. For the first topology we have the following seeds:

𝑆1(𝑡) = 𝐴𝑅𝑀𝐴(2, 1) with 𝛼1 = 0.6, 𝛼2 = −0.3 and 𝛽1 = 0.5
𝑆2(𝑡) = 𝐴𝑅𝐼𝑀𝐴(2, 1, 1) with 𝛼1 = 0.9, 𝛼2 = −0.6 and 𝛽1 = 0.8
𝑆3(𝑡) = 𝑠𝑖𝑛(0.2𝐴𝑅𝐼𝑀𝐴(0, 0, 0) + 𝜋)
𝑆4(𝑡) = 5.3𝑐𝑜𝑠(2𝜋𝑡∕300) + 2 .

And the nodes of the topology are defined by:

𝑁1 = 𝑆1 (9)

𝑁2 = 3.4𝑁1 + 0.7𝑆2 (10)

𝑁3 = 7.1𝑁1𝑆3 (11)

𝑁4 = 3.2𝑁3𝑆4. (12)

Topology 2. In the second topology, the seeds are:

𝑆1(𝑡) = 𝐴𝑅𝐼𝑀𝐴(1, 1, 1) with 𝛼1 = −0.1 and 𝛽1 = 0.8
𝑆2(𝑡) = 𝐴𝑅𝐼𝑀𝐴(2, 1, 1) with 𝛼1 = 0.78, 𝛼2 = −0.378 and 𝛽1 = 0.01
𝑆3(𝑡) = 𝑠𝑖𝑛(0.2𝐴𝑅𝐼𝑀𝐴(1, 1, 1) + 𝜋) with 𝛼1 = 0.58 and 𝛽1 = 0.03
𝑆4(𝑡) = 𝑠𝐴𝑅𝐼𝑀𝐴((2, 1, 1), (2, 0, 1)) with 𝛼1 = 0.1, 𝛼2 = −0.6 and 𝛽1 = 0.8 for the

ARIMA model, and
𝛼1 = 0.6, 𝛼2 = −0.8 and 𝛽1 = 0.3 for the
seasonal component.

and the nodes are specified by:

𝑁1 = 𝑆1 (13)

𝑁2 = 3.4𝑁1𝑆2 (14)

𝑁3 = 7.1𝑁1𝑆3 +𝑁4 (15)

𝑁4 = 𝑆4. (16)

Topology 3. For the third topology, we have the following seeds:

𝑆1(𝑡) = 𝐴𝑅𝐼𝑀𝐴(1, 1, 1) with 𝛼1 = −0.4 and 𝛽1 = 0.3
𝑆2(𝑡) = 𝐴𝑅𝐼𝑀𝐴(2, 1, 2) with 𝛼1 = 0.78, 𝛼2 = −0.378 and 𝛽1 = 0.01,

𝛽2 = −0.1
𝑆3(𝑡) = 𝜃𝑠𝑖𝑛(0.2𝜃 + 𝜋) where 𝜃 = 𝐴𝑅𝐼𝑀𝐴(0, 0, 0)
𝑆4(𝑡) = 𝑠𝐴𝑅𝐼𝑀𝐴((2, 1, 1), (2, 0, 1)) with 𝛼1 = 0.1, 𝛼2 = −0.6 and 𝛽1 = 0.8 for the

ARIMA model, and
𝛼1 = 0.6, 𝛼2 = −0.8 and 𝛽1 = 0.3 for the
seasonal component.

𝑆5(𝑡) = 𝑠𝐴𝑅𝐼𝑀𝐴((1, 1, 1), (2, 0, 1)) with 𝛼1 = −0.8 and 𝛽1 = 0.8 for the ARIMA
model, and
𝛼1 = 0.6, 𝛼2 = −0.8 and 𝛽1 = 0.11 for the
seasonal component.

and the nodes are specified by:

𝑁1 = 𝑆1 (17)
𝑁2 = 3.4𝑁1𝑆2 (18)
𝑁3 = 7.1𝑆3𝑁4 + 3.2𝑁1 (19)
𝑁4 = 1.01𝑆4𝑁1 (20)
𝑁5 = −0.18𝑆5 +𝑁4. (21)

Topology complexity is related to (i) the number of existing elements
in the set, which in the case of the graph, is given by the nodes and
number of connections between them, (ii) and the distribution of these
connections related to the number of ways that it is possible to travel
from a certain element to a connected element. Topology 1 has only 4
nodes and 3 edges with all elements having at most 1 parent i.e. there is
only one path to reach a certain element. Topology 2, maintains 4 nodes
and 3 edges (same number of elements as topology 1) but increases
the complexity by allowing node 3 to be reached from two different
nodes. Finally, topology 3 increases the complexity of the two previous
topologies with more elements (both nodes and edges), and further
incorporating alternative routes to go from one node to another e.g. N1
to N3.
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