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Abstract
How to represent adequate knowledge for solv-
ing a problem is a challenging task in the design
of artificial intelligent agents. Ideally we would
like an agent to create its own representations. In
this paper, we describe the ADC (Automatic Dis-
covery of Concepts) algorithm for learning re-
lational concepts and actions to represent states
of the environment and solve tasks, using induc-
tive logic programming and reinforcement learn-
ing. Our experiments show that an intrinsic mo-
tivation function and automatically learning new
representations can reduce the learning time and
produce useful concepts for solving a task.

1. Introduction
Artificial intelligent agents should perceive and interact
with its surrounding world. An autonomous agent should
be able to represent, learn and reason about its environment
using its basic background knowledge (BK) and experience
(Russell & Norvig, 2008). It should adapt its behavior au-
tomatically when changes in the environment occur, im-
proving its skills increasing its independence (from human
programmers) and precision, and also reducing the time in
the execution of tasks.

The definition of abstract concepts can be used to simplify
the representation of the world and improve the machine
learning (ML) process. On the other hand, the learning of
new actions can be used to acquire new skills. In this pa-
per a concept is understood as a set of objects, attributes
and relations among them. In ML, Inductive Logic pro-
gramming (ILP) (Muggleton, 1991) has been successful in
the learning of concepts because of its powerful represen-
tation based on logic and its robust inductive methods. ILP
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can also provide mechanisms to add new vocabulary to the
initial BK as demand-driven predicate invention (Muggle-
ton & Road, 1994; Stahl, 1996; Wrobel, 1994; Li et al.,
2008; Stanley & Domingos, 2007; Kosmerlj et al., 2011).
Reinforcement learning (RL) (Sutton & Barto, 1998) has
been useful to acquire skills from experience when exter-
nal rewards are provided. Recently, intrinsic motivation
functions (Merrick & Mahler, 2013; Baldassarre & Mirolli,
2013) have been used in RL to guide the learning process
automatically (Singh et al., 2005; Zhang & Weng, 2002;
Merrick & Mahler, 2006; 2013).

In this paper, we describe ADC, a method for intelligent
agents to automatically learn relational concepts and ac-
tions during the exploration of unknown environments. Our
approach is designed to discover and collect examples of
potential concepts, using ILP, that are used to represent the
environment, while actions are learned through RL with in-
trinsic motivation based on an asymmetrical Wundt’s curve
(Berlyne, 1960). The main contributions of this research
are: a) Automatic, incremental and simultaneous learn-
ing of relational concepts by predicate invention, construc-
tion of descriptions of states based on those relational con-
cepts and learning of actions over that state representation;
and b) Automatic intrinsic guide for exploration of envi-
ronments in a concept discovery framework. In the next
section related work is described, Section 3 introduces the
proposed ADC algorithm, Section 4 describes experiments
where we illustrate the functionality of ADC with a mobil-
ity domain, and Section 5 presents conclusions and future
research work.

2. Related work
Abstraction in RL has been performed in different com-
ponents of RL algorithms, as value functions, actions and
state representations. Much of work has been done in tem-
poral abstractions for actions, as the discovery of useful
subgoals based on options (Sutton et al., 1999). Meth-
ods based on options to identify subgoals that helps to
reach new, strategic, parts of the environment have been
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proposed using different techniques as relative novelty
(based on novelty calculated by number of visits to close
states) (Barto & Simsek, 2004) or diverse density (detec-
tion of regions with most successful trajectories (sequences
of states) to reach other strategic states) (McGovern &
Barto, 2001). State abstractions have been also performed
with different techniques, safe state abstractions have been
learned based on decomposition of value functions in ad-
ditive parts based on expected rewards (Andre & Russell,
2002), deep neural networks have been used to deal with
high dimensional learning (Kulkarni et al., 2016), other
works have been used abstractions to deal with continu-
ous spaces and learn functional concepts by unsupervised
clustering (Mousavi et al., 2015), and ILP with relational
learning in RL has been used to create relational represen-
tations of states, actions and specific goals arising relational
reinforcement learning (RRL) (Džeroski et al., 2001).

Regarding to this last technique, RRL allows to use more
expressive representations because of using ILP, reduce
search space, create structural representations and make
easier the reuse of basic knowledge acquired in simple
tasks in other more complex (Tadepalli et al., 2004). Rein-
forcement learning over abstractions of space has been ad-
dressed defining relational properties of the state space and
relational actions over the states, building hierarchical rep-
resentations (Morales, 2004). Also, RRL with guidance has
been addressed based on human controllers and demonstra-
tions applied to games and robotics (Driessens & Džeroski,
2004; Martı́nez et al., 2015). RRL has been used in exten-
sions of RL as Inverse RRL (Munzer et al., 2015), where a
reward function which explains an expert policy should be
learned, and Interactive RL (Nickles & Rettinger, 2014),
where an agent interacts with human users to understand
concepts.

Our proposed method described in this paper is most re-
lated to RRL abstraction techniques, since ADC represents
the knowledge as logic clauses. It automatically creates an
incremental and hierarchical representation of the environ-
ment, where states are represented by relational concepts
learned by ILP, over which policies are learned by RL.

3. ADC: Concept discovery and learning of
actions

The learning of relational concepts and actions during
the exploration of unknown environments, involves sev-
eral challenges, mainly because, agents should be as au-
tonomous as possible. Agents should be able to drive their
own learning process, figuring out how to learn concepts
and actions automatically. The exploration can be exploited
to learn to perform tasks, identify what situations cause the
learning of new concepts, and also, evaluate the benefits of
introducing that new knowledge.

With ADC (for Automatic Discovery of Concepts), an
agent learns relational concepts and actions through sub-
graph discovery, inductive logic programming and rein-
forcement learning. The acquired knowledge represented
by relational concepts helps to simplify the representa-
tion of the world and the reasoning process. The acquired
knowledge can be reused in different tasks and can also be
easily understood by humans. The relational concepts are
used to represent states of the world for learning actions.
The learning of actions helps to evaluate the utility of the
relational concepts. Moreover, learning of actions through
experience helps to improve the skills of an agent for the
accomplishment of tasks. The next subsections describe
how these processes are performed by ADC.

3.1. How to represent knowledge in concept discovery

In our approach, ADC represents all knowledge provided
and acquired using Horn clauses (concepts, definitions of
states and actions). First-order logic (FOL) provides ro-
bust reasoning mechanisms (as induction) and a represen-
tation easier to understand than other common representa-
tions (e.g., function approximators, neural networks, vec-
tors). For the exploration of an environment, an agent
should start with some basic knowledge. In ADC, initial
background knowledge is formed by predicates represent-
ing simple objects, attributes and relations, and also, some
basic actions.

3.2. How to discover potential concepts

In ADC, demand-driven predicate invention with an auto-
matic collection of examples of potential concepts is per-
formed. The agent uses the basic actions to explore the en-
vironment. During the exploration, it uses its background
knowledge and its sensors to identify elements of the en-
vironment and incrementally construct a graph-based rep-
resentation. Each predicate identified in the environment
about an object and/or attribute is mapped as a vertex, and
a relation is mapped as an edge in the graph. The growth
of this graph is limited to speed up its subsequent process-
ing. ADC assumes that frequent representations identified
in the environment can be potentially useful new concepts.

If some elements are identified more than once in the envi-
ronment, they are potentially relevant features of the envi-
ronment that can provide significant information about how
to define that place. In ADC, the agent performs a frequent
substructure search in the constructed graph-based repre-
sentation of the environment, through the system Subdue
(Holder et al., 1994). Each discovered frequent sub-graph
is an example of a potential concept. The frequent sub-
graphs are represented also by a FOL clause. ADC clusters
these examples based on two similarity measures based on
relevant elements and inexact matching.
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With the first measure, a sub-graph gi is added to a group
Ck if certain percentage of the objects and relations of the
clause clgi of gi can also be found in the common objects
and relations Rk found in the instances of that group. This
measure allows to cluster sub-graphs which share the same
objects and relations although their structures and sizes
could be different. Let clgi be a new instance clause and
Lg be its set of literals. Let Ck be a group of instances and
Rk be the set of common literals in the clauses of the in-
stances in Ck according to Equation 3. A sub-graph gi is
added to a group Ck, if a large proportion of the literals Lg

in clgi are common to Rk (see Equation 1) and if a large
proportion of the most common literals in Ck (i.e., Rk) are
common to the literals in clgi (see Equation 2).

gi 2 Ck iff
|Lg \Rk|

|Lg| � th1 (1)

gi 2 Ck iff
|Lg \Rk|

|Rk| � th2 (2)

l 2 Rk iff
SCkX

i=1

|{l} \ Lgi | �
P|LCk

|
j=1

PSCk
i=1 |{lj} \ Lgi |
|LCk |

(3)

where SCk = number of sub-graphs of Ck, LCk = set of
literals of all graphs in Ck and th1, th2 = threshold values.
Let N(l) = name of literal l and L a set of literals:

{l} \ L =

⇢
l if N(l) = N(k) and k 2 L
; otherwise (4)

The second measure takes into account the size and struc-
ture of the sub-graphs. A sub-graph gi is added to a
group of sub-graphs Ck if the average cost of structural
changes to make gi = gk 2 Ck for all the sub-graphs
in Ck is smaller than a threshold value (see Equation 5).
The matchcost(gi, gk) corresponds to the inexact match-
ing measure used in Subdue, this function calculates the
minimum cost to convert one graph to another, considering
a cost based on deletion, insertion and substitution of ver-
texes and edges, through a branch-and-bound tree search
algorithm (Holder et al., 1994).

gi 2 Ck iff
PSCk

j=1 matchcost(gi, gj)

SCk

 th3 (5)

When an example cannot be added to a group a new group
is created with this example. As each group have a set of
similar examples of a potential concept, a definition is in-
duced by the ILP system Progol (Muggleton, 1995), us-
ing the grouped examples as positive examples and a set

of negative examples. The negative examples set are cre-
ated using the examples gathered in other groups and pro-
ducing synthetic examples creating variations of the pos-
itive examples of the group where the definition is being
induced. These variations are produced by deleting rela-
tions from original positive examples. This process to pro-
duce negative examples avoids over-generalization during
the induction. Each clg 2 Ex+ has the form hg  O,R
where hg is the head of the clause, O = {o1, o2, . . . , on}
is the set of literals in the clause that describes objects, and
R = {r1, r2, . . . , rm} is the set of literals that describes re-
lations among objects. Artificial negative examples are (if
they are not members of Ex+):

hg  O (a clause without relations)
hg  R (a clause without explicit objects)
hg  O,R0|R0 ⇢ R (clauses with a smaller number
of relations

The formation of groups of examples is incremental dur-
ing the learning process. The definitions of the learned
concepts are used to learn new concepts (hierarchical con-
cepts), added to the current background knowledge and or-
ganized in a lattice.

3.3. How to recognize the environment with concepts to
learn actions

Concepts learned by ADC are used to define states of the
environment in ADC. Each time the agent performs an ac-
tion, it checks which of the learned concepts are present in
its current situation. If the current situation is not a known
state, the agent constructs a new clause definition for such
state as a conjunction of the identified concepts. If the state
is known and additional learned concepts can be identified
in that situation, ADC updates the definition of the state.
New states are added to the background knowledge of the
agent. So, the agent constructs an incremental represen-
tation of the environment, that can be updated during the
exploration of an environment.

3.4. How to guide the exploration and learn actions

In ADC, the learning of actions is performed with tradi-
tional rewards (re) using Sarsa�� with eligibility of traces
(Sutton & Barto, 1998). The agent performs basic ac-
tions to explore the environment. Actions are learned for
the states defined by concepts. Actions are defined as
STRIPS-like operators (Fikes & Nilsson, 1971), with pre-
conditions, actions and post-conditions. Also, an agent us-
ing ADC drives its own exploration of the environment
using an intrinsic motivation function. The agent is self-
attracted to few known situations and repelled by well-
known states by intrinsic motivation. This motivation
is based on the Wundt’s curve (Berlyne, 1960) but de-
fined asymmetrically to reduce the time of exploration (see
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Equation 6), and given as a reward ri, r = re + ri,

ri =
maxReward

(1 + exp(C1 ⇤ (�novelty +minNoveltyR)))
+

maxPunish

(1 + exp(�C2 ⇤ (novelty �minNoveltyP )))
(6)

where maxReward = maximum value for reward,
maxPunish =maximum value for punishment,
minNoveltyR =minimum value of novelty for re-
ward, minNoveltyP =minimum value of novelty
for punishment, C1 and C2 are the parameters to
define the Wundt’s curve, C1 < C2 defines the asym-
metry of the curve. The highest value of novelty
(novelty = maxV alueNovelty) is given when a new
state is reached, otherwise, novelty = numV isitss ⇤
noveltyMostV isiteds/maxNumV isitsS .
numV isitss = number of views of the current state
during exploration (initially 0). maxNumV isitsS =

number of views of the most viewed state (among all
the states) until then (initially 0), for all the states,
and numV isitss = value of the most viewed state.
noveltyMostV isiteds = value for novelty of the most
viewed state in the past. A state stops receiving intrinsic
rewards when all possible actions have been performed in
this state, or when the number of visits numV isitss is
larger than the number of the current actions multiplied by
a threshold value.

3.5. Scope and limitations of ADC

ADC requires an initial background knowledge represented
in first-order language, relative to the domain, to iden-
tify elements in the environment, explore and learn tasks.
Continuous spaces can be discretized by the BK of ADC.
The performance of ADC depends on: initial background
knowledge and capability of the agent to recognize basic el-
ements of the environment, presence or absence of frequent
substructures that could been used for the same algorithm
to identify the environment, size of the explored environ-
ment, size of the graphs constructed (number of vertexes
and edges), number of discovered potential concepts, num-
ber of characterized and unidentifiable states, and time to
perform actions. The inexact matching process used in the
frequent sub-graph search for a graph 1 with n vertices and
a graph 2 with m vertices, where m � n, has a complexity
of O(nm+1

), although its performance can be improved by
the use of a branch-and-bound search algorithm (Cook &
Holder, 1994). The growth of the graphs constructed by
ADC is limited to speed up the learning in large spaces.
It is expected that with large background knowledge and
environments, the performance of ADC can be seriously
affected.

4. Experiments
This section shows the results obtained using ADC in a do-
main of mobility of objects. A Nao (Aldebaran-Robotics,
2012) robot was used in a room (3m2 ) formed by four
walls simulated through Webots for Nao (Michel, 2004),
see Figure 1. The robot explored the environment perform-
ing four basic actions provided in its initial background
knowledge. States were identified by only four colors
(green, blue, yellow and red) and relative positions between
the objects and the robot. The initial background knowl-
edge provided is shown in Table 1.The task of the robot
was Go to the red balls and discover the hidden green wall,
pushing the balls.

Figure 1. Environment of Mobility of objects: initial state and ex-
ample of goal state. A simulated humanoid in a room with walls
of boxes and movable balls.

The incremental representation of states based on concepts
was compared against a traditional RL algorithm with pre-
defined states provided by the user. We also evaluated the
effectiveness of the intrinsic motivation function and biased
actions in RL. The general parameters of ADC used in the
experiments were: th1 = 0.6, th2 = 0.7, th3 = 2.0,
re = 10, � = 0.9, � = 0.9, ↵ = 0.1, ✏ = 0.2,
maxReward = 1, minNoveltyR = 0.3, maxPunish =

�1, minNoveltyP = 1.2, noveltyMostV isiteds = 1.7,
minNumV isitsa�s = 1.5, C1 = 8, C2 = 12, inc = 0.1
and dec = 0.2. The values for thresholds of substruc-
ture discovery were chosen following the theory provided
in (Holder et al., 1994) and (Cook & Holder, 1994), ex-
amples of working of the parameters in different databases
can be found in (Cook & Holder, 1994). The thresholds for
clustering were chosen to cluster elements in a same group
with more than a half of similar components among them.
The values for the RL parameters were chosen according to
the experimental data and recommendations for traces of
eligibility without replacement reported in (Singh & Sut-
ton, 1996). Experiments were conducted on Debian Linux
7.1 (OS) with hardware based on Intel Core i7-3610QM
2.3GHz (CPU) and 6Gb of RAM at 1600MHz.

We performed two experiments (repeated 10 times each):
(i) Use pre-defined states and actions and compared RL
(SARSA with eligibility traces) with/without the intrin-
sic motivation function (PS: Extrinsic/Extrinsic + Intrinsic)
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Table 1. Background knowledge provided to learn concepts about
Mobility of objects.

Background knowledge
object/4 Object: instance of an object of the world with
its attributes. Arguments: identifier of the instance of the
object and its three attributes (color, previous position,
current position).
robot/3 Object: agent/robot who is exploring the envi-
ronment and its attributes. Arguments: identifier of the
robot and its two attributes (previous position, current po-
sition).
in front of me/2 Relation: a relative position (in front of)
between an object of the world and the agent.
equal/2 Relation: approximate equality of two positions.
Arguments: identifiers of two instances (object or robot).
different/2 Relation: approximate inequality of two posi-
tions.
Arguments: identifiers of two instances (object or robot).
go Right/2 (/0) Action: turning right (90�) and going for-
ward (while obstacles are not perceived).
go Left/2 (/0) Action: turning left (90�) and going for-
ward (while obstacles are not perceived).
go Forward/2 (/0) Action: going forward (while obsta-
cles are not perceived).
push/2 (/0) Action: moving the arms to push.
Two arguments (/2 ): identifiers of two instances (robot)
in two different time instants.

and (ii) allow to learn states and actions while exploring
the environment (ADC) and compare RL with/without the
intrinsic motivation function (Extrinsic/ADC: Extrinsic +
Intrinsic).

The results obtained with predefined states are shown in
Figure 2 and Table 2. The results obtained using ADC (in-
cremental representation based on concepts) are shown in
Figure 2 and Table 3. The total number of concepts learned
with each configuration is shown, but also the number of
general, singleton and hierarchical concepts are shown.
General concepts have induced definitions, singleton con-
cepts define groups with only one instance and hierarchical
concepts have in their definitions other concepts previously
learned. In unknown environments it is difficult to know

Table 2. Average convergence time and number of episodes for
each experiment of Mobility of objects with predefined states.

Experiment Time (hr:min:secs) No. episode
AVG (SD) AVG (SD)

PS: Extrinsic (RL
traditional)

03:34:09
(00:47:11)

17 (6)

PS: Extrinsic + In-
trinsic

01:21:14
(00:18:01)

10 (2)

Table 3. Average convergence time and number of episodes for
each experiment of Mobility of objects with ADC (G=General,
S=Singleton, H=Hierarchical concepts).

Experiment Time
(hr:min:secs)

No.
episode

No.
states

No. concepts
{G, S, H}

AVG (SD) AVG
(SD)

AVG
(SD)

AVG (SD) {AVG
(SD), AVG (SD),
AVG (SD)}

Extrinsic
(RL tradi-
tional)

06:44:54
(03:16:00)

21 (3) 12
(3)

168 (13) {27
(6), 142 (16),
145 (5)}

ADC:
Extrinsic +
Intrinsic

06:23:27
(01:41:00)

20 (6) 16
(5)

153 (1) {33
(10) 122 (11)
136 (2)}

Figure 2. Learning curves with predefined and incremental states
with the ADC algorithm with intrinsic motivation and traditional
RL with/without intrinsic motivation in Mobility of objects with
predefined states.

a priori what number of concepts could be discovered or
what concepts are useful. So, it is preferred a moderate
number of concepts, with large numbers of general and hi-
erarchical concepts, learned in short time. Also those con-
cepts should be representative of the environment and use-
ful to learn tasks.

In predefined states, the best results are obtained when the
intrinsic reward is added to the traditional RL algorithm.
The intrinsic motivation helps to focus on constant explo-
ration of few known states avoiding to revisit well known
states and reducing the learning time by 2 hours (see Ta-
ble 2). The novel strategy of exploration, designed to bal-
ance the concept discovery and the learning of actions in
unknown environments simultaneously, seems not to affect
the learning behavior obtaining better results than the tra-
ditional RL algorithm.

In the complete ADC (incremental representation based on
concepts), the best results are also obtained when ADC
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uses intrinsic motivation to guide the exploration (accord-
ing to the learning time, and consistency in number of con-
cepts, states and episodes). The intrinsic motivation keeps
the agent focused in learning both, concepts and behavior
policy. Using intrinsic motivation allows a more consistent
learning than with the traditional strategy of exploration (a
lower standard deviation in number of concepts and learn-
ing time). Similar behavior policies, states and concepts
could be learned by the two strategies of exploration. The
learning times were greater than those obtained with prede-
fined states. However, in these experiments, concepts were
learned and states were characterized using those concepts
automatically, with an accumulated reward and number of
episodes similar to those obtained with predefined states.

Table 4. Mobility of objects (Extrinsic + Intrinsic). Learned ac-
tion, state descriptions where actions were learned and concept
definitions which are used to describe the states.

% The robot learned to go to the right when it was in front of
blue walls, go to the left when it was in front of yellow walls and
push red balls to discover a green wall.

do Action(4):-state(1),go Right(),state(3),go Left(),state(8),
push(),state(9).
state(1):-c72(A,B,C,blue,D,E,F),c7(A,B,C,blue,D,E,F).
state(3):-c59(A,B,C,yellow,D,E,F),c146(A,B,C,yellow,D,E,F).
state(8):-c123(A,B,C,red,D,E,F).
state(9):-c148(A,B,C,green,D,E,F).
c72(A,B,C,blue,D,E,F):-object(A,B,C,blue),robot(D,E,F),
in front of me(A,D),different(E,F).
c7(A,B,C,blue,D,E,F):-object(A,B,C,blue),robot(D,E,F),
in front of me(A,D).
c59(A,B,C,yellow,D,E,F):-object(A,B,C,yellow),robot(D,E,F),
in front of me(A,D),equal(B,C).
c146(A,B,C,yellow,D,E,F):-object(A,B,C,yellow),robot(D,E,F),
in front of me(A,D).
c123(A,B,C,red,D,E,F):-object(A,B,C,red),robot(D,E,F),
in front of me(A,D),equal(B,C),different(E,F).
c148(A,B,C,green,D,E,F):-object(A,B,C,green),robot(D,E,F),
in front of me(A,D).

Table 4 shows examples of a behavior policy (a sequence of
three actions and four states to reach the goal), states (sets
of concepts involving the colored walls and balls, and the
robot) and concepts (different relative positions between
the robot and the colored objects) all of them automati-
cally learned with ADC with intrinsic motivation (Extrinsic
+ Intrinsic). Four states were identified by the robot to ac-
complish the task describing: the robot has reached a blue
object, it is in front of him (state(1) and concepts c72,c7),
the robot is in front of a yellow object (state(3) and con-
cepts c59,c146), the robot has reached a red object, it is
in front of him (state(8) and concept c123) and the robot is
in front of a green object (state(9) and concept c148). The
robot learned to go to the balls and move them to find the
green wall.

Table 5 shows additional useful concepts related with mo-
bility learned by ADC aside from the learned concepts to
solve the task. ADC could describe which objects were
fixed and which were movable. The blue objects could not
be pushed by the robot (c16, c17), so these objects could
be labeled as fixed. The red objects could be pushed by the
robot, so these objects could be labeled as movable (c123,
c129).

Table 5. Mobility of objects (Extrinsic + Intrinsic). Examples of
definitions of concepts learned by ADC. For presentation pur-
poses, the number of arguments of previously learned concepts
used in the definition of new concepts is reduced to one.

Mobility of objects
Concepts Description
c16(A,B,B,blue,C,D,D):-
object(A,B,B,blue),robot(C,D,D),

A robot is standing in front
of a blue object

in front of me(A,C),
equal(B,B),equal(D,D).
c17(A,B):-
c16(A),c16(B),push(A,B).

A robot tries to push a blue
object, the robot and the ob-
ject do not change its posi-
tion, the object is fixed

c123(A,B,C,red,D,E,F):-
object(A,B,C,red),

A robot is in front of a red
object, the red object

robot(D,E,F), changed its position
in front of me(A,D),
equal(E,F),different(B,C).
c129(f0,f1):-
c123(f0),c123(f1),push(f0,f1).

A robot tries to push a red
object, the robot does not
change its position, the ob-
ject changes it position, the
object is movable

5. Conclusions and future work
The ADC algorithm has been introduced for simultane-
ously learning concepts and actions in unknown environ-
ments. Experiments in a domain of mobility of objects
were performed to illustrate the functionality of ADC. The
results shown that a self-motivated agent is able to learn
useful relational concepts, build state descriptions based on
concepts and learn actions in this domain. It was shown
that self-motivation, based on an asymmetrical Wundt’s
curve, accelerates and guides the learning process of the
agent.

As future work, the representation of ADC can be improved
to include functional symbols, negation and recursivity. A
method to filter useful and not useful concepts can be in-
cluded. Also we need to perform more tests and evaluate
ADC in other more challenging environments with robust
and more complex actions to facilitate the exploration (for
reducing accumulated errors when performing actions and
for speeding up the learning process). We also need to as-
sess the sensitivity of the algorithm to its parameters.
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