
Article

Adaptive Behavior
1–15
! The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1059712316664570
adb.sagepub.com

Transfer learning by prototype
generation in continuous spaces

Enrique Munoz de Cote, Esteban O Garcia and Eduardo F Morales

Abstract
In machine learning, learning a task is expensive (many training samples are needed) and it is therefore of general interest
to be able to reuse knowledge across tasks. This is the case in aerial robotics applications, where an autonomous aerial
robot cannot interact with the environment hazard free. Prototype generation is a well known technique commonly
used in supervised learning to help reduce the number of samples needed to learn a task. However, little is known about
how such techniques can be used in a reinforcement learning task. In this work we propose an algorithm that, in order
to learn a new (target) task, first generates new samples—prototypes—based on samples acquired previously in a
known (source) task. The proposed approach uses Gaussian processes to learn a continuous multidimensional transition
function, rendering the method capable of reasoning directly in continuous (states and actions) domains. We base the
prototype generation on a careful selection of a subset of samples from the source task (based on known filtering tech-
niques) and transforming such samples using the (little) knowledge acquired in the target task. Our experimental evi-
dence gathered in known reinforcement learning benchmark tasks, as well as a challenging quadcopter to helicopter
transfer task, suggests that prototype generation is feasible and, furthermore, that the filtering technique used is not as
important as a correct transformation model.

Keywords
Transfer learning, reinforcement learning, Gaussian processes, prototype generation

1 Introduction

Autonomy in robots—and machines in a broader
sense—is reaching levels where operation knowledge
will no longer be required. Even when this makes final
users’ life easier, it means that robots must have higher
adaptability to changing environments and must learn
new tasks with a small number of interactions.
Reinforcement learning (RL) is a common learning
technique used in robotics (among many other fields),
where the robot can discover the solution to a task
while it is directly interacting with its environment and
receiving rewards as feedback about the desirability of
the states and actions. However, one of the most limit-
ing requirements of most RL algorithms (e.g. Q-learn-
ing, SARSA or R-max) is their need to collect a large
quantity of data (experience) in order to learn an opti-
mal policy. This requirement is often what prevents RL
techniques from being deployed in real systems, like in
real robotic applications.1 Several techniques tackle this
problem from different angles: using abstract represen-
tations, like functional or relational learning (Bertsekas
& Tsitsiklis, 1996; van Otterlo, 2009), updating several
state-action values at a time, like eligibility traces

(Jaakola, Jordan, & Singh, 1995), or incorporating
additional guidance or information, like reward shap-
ing (Ng, Harada, & Russell, 1999). In this paper, we
propose to approximate a Markov decision process
(MDP)’s transition function directly in the continuous
space domain while learning and present a transfer
learning (TL) technique that reduces the number of
training instances needed to learn a correct control
policy.

In more detail, TL is a machine learning technique
whose objective is to reduce the number of interactions
required to learn an optimal policy by sharing experi-
ence (knowledge) between related tasks. Needless to
say, it is of utmost importance to identify common fea-
tures between related tasks so that sharing knowledge is
valuable in the target task. As an illustrative example,

Computer Science Department, Instituto Nacional de Astrófisica, Óptica
y Electrónica, Mexico

Corresponding author:
Enrique Munoz de Cote, Instituto Nacional de Astrófisica, Óptica y
Electrónica, Computer Science Department, Luis Enrique Erro 1,
Tonantzintla, Puebla, México C.P. 72840.
Email: jemc@inaoep.mx

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

imagine two rivers with the same dimensions and water
density but different constant flows. Now imagine a
boat that learns to cross the first river from point ‘‘a’’ to
point ‘‘b’’ and that needs to cross (still from point ‘‘a’’
to point ‘‘b’’) the second river. We can intuitively say
both tasks are related,2 and that some knowledge can
be reused (with probably only needing to apply some
scalar transformation along the way) to learn to cross
the second river with fewer instances.

There are a number of shortcomings that have not
been fully addressed in the literature when solving this
kind of task. One is the lack of studies that work
directly on continuous domains (without needing a dis-
cretization process), which is of special interest in con-
trol problems to avoid bang-bang controllers that
reduce the life of machines, or in financial, earth sci-
ence and medical applications where precision cannot
be rounded to the nearest integer. Another shortcom-
ing is with respect to the type of knowledge being trans-
ferred. In fact, most approaches focus on transferring
experience instances3,4 (Lazaric, Restelli, & Bonarini,
2008; Taylor, Jong, & Stone, 2008). However, this
could be detrimental if optimal policies change drama-
tically between tasks or if instances in a source task are
not relevant in the target task. In this work we propose
learning a model of the target task by first transferring
relevant information (instances) from a source task to
the target task. This knowledge transfer is fulfilled by
first selecting the instances that are considered most rel-
evant and then synthesizing new instances. Such artifi-
cially generated instances are known in the literature as
prototypes and, for the RL algorithm we will describe
later on, instances and prototypes are indistinguishable
(as is also the case in the supervised learning setting).

It is worth noting that the generated prototypes
should be as much informative as possible so that fewer
instances and prototypes are needed to correctly learn
a task. Also, this technique will allow the agent to have
better prior information when starting than that
obtained by just transferring raw information across
tasks, which the agent will utilize as a jump-start in the
learning process. With this in mind, the probability of
negative transfer will be lessened. As the agent progresses
in learning the dynamics of the target task, the transferred
information is progressively reduced to avoid negative
transfer and promote learning an optimal policy.

The experiments presented on well known RL con-
trol benchmarks (cart-pole and mountain car) show
significant improvements over state-of-the-art algo-
rithms in two objective measures: the total accumulated
reward while learning and the number of episodes
required to learn. We also present experiments in the
more realistic task of transferring knowledge from a
quadcopter to a helicopter and show that it is possible
to transfer knowledge between high-dimensional con-
tinuous challenging tasks. The structure of this paper is
as follows. In Section 2, we give an overview of the

most closely related work in TL. Section 3 briefly intro-
duces RL, Gaussian processes and how Gaussian pro-
cesses can be used to represent state transition
functions. In Section 4, the proposed transfer method
is described in detail. Section 5 presents experimental
results in several relevant problems for RL. Section 6
summarizes the paper and proposes future research
directions.

2 Related work

TL refers to the problem of retaining and applying the
knowledge learned in one or more tasks to efficiently
develop an effective hypothesis for a new task (Silver
et al., 2005). Most of the early research was performed
for the supervised learning paradigm and it is only
recently that there has been increasing attention on the
RL paradigm. One of the first approaches is described
by Atkeson and Santamaria (1997) while comparing
model-based and model-free RL algorithms, where
they use a locally weighted regression model of the pen-
dulum dynamics to infer reward function structure
across tasks that only differ in their reward function.
Our approach is partly built on this work, where, as
they do, we learn a regression model. However, here we
propose using Gaussian processes to learn a model of
the probability transition function and furthermore
train another Gaussian process to synthesize proto-
types based on source task instances.

Other more recent methods commence from the idea
that the source task can be decomposed into a set of
subtasks that might be also found in the target task
(Drummond, 2002; Mehta, Natarajan, Tadepalli, &
Fern, 2008). This is the case of the MAX-Q hierarchical
decompositions (Dietterich, 2000) that even if interest-
ing, all these approaches only work in highly (hierarchi-
cally) structured domains. Other methods focus on
problems where the source and target tasks have differ-
ent state representations, but can still be related
through an inter-task mapping (Ammar, Tuyls, &
Taylor, 2012; Taylor et al., 2008; Taylor, Stone, & Liu,
2007). Inter-task mapping is related to this work but
tackles a relatively different problem. Whereas inter-
task mapping focuses on finding mappings across
domain representations and tasks so that source
instances can be directly mapped as target instances,
here we focus on transferring a subset of instances and
generating prototypes. Lastly, most of the mentioned
related approaches have been developed to face discrete
problems or, in the best case, to deal with continuous
states and discrete actions. In this work, we focus on a
challenging scenario related to real world tasks, where
the variables that describe the state and actions are
continuous and we assume that the problem can not be
discretized. In this scenario, all other TL approaches
are infeasible, at least without significant adaptations.

2 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

To our knowledge, the only exceptions that learn tasks
in a continuous domain RL framework and do so with-
out discretization methods are those in (Deisenroth &
Rasmussen, 2011; Hasselt, 2011; Lazaric, Restelli, &
Bonarini, 2007; Martı́n H, de Lope, & Maravall, 2011;
Ng, Kim, Jordan, & Sastry, 2004; van Hasselt, 2011).
However, none of these study the problem of transfer-
ring knowledge across domains.

A different vein of research pursues the problem of
TL in RL by transferring policies across domains. In
Torrey, Walker, Shavlik, and Maclin (2005), the
source task Q-function5 is used to generate recom-
mended actions in the target task. In the target task,
such recommended actions have more probability of
being executed. This heuristic is useful for tasks where
the actions are discrete. However in tasks like the
ones considered in this work, this sort of method is
infeasible, because discretizing the actions for fine
control can lead to unmanageable amounts of infor-
mation. Soni and Singh (2006) look for relationships
between state-action pairs of both the source and tar-
get tasks. Using these relationships they search for
skills that the agent performs (called options) by
grouping sequential transitions so they can be used as
preferred traces within specific states on the target
task. These options can be discovered only if action
sequences (i.e. traces) can be identified. However, in
continuous tasks it is almost impossible to execute the
same action twice in the same learning process, so
sequences of actions would all be different and would
be hardly useful.

The closest line of work to this paper is the works of
Lazaric (2008), Lazaric et al. (2008) and Taylor et al.
(2008). Like us, they propose transferring instances
composed by hstate, action, reward, next statei from the
source task to the target task. Lazaric (2008) does so
by following similarity measures between tasks that are
based on some distance metric. The actions in these
works are discrete and are used as indexes to cluster
instances together. This type of TL can be thought of
like a filtering method that allows only instances that
are thought to be relevant to the target task to be trans-
ferred. In this work we use a filtering function to select
subsets of relevant features, but then we transform such
subsets to prototypes in the target task. We use several
different filtering functions (see Section 4.3), one such
function is Lazaric’s technique presented here. As such,
we compare this technique with a simpler filtering tech-
nique, showing that the filtering technique used is actu-
ally not very relevant to the problem of generating
relevant prototypes.

When working directly with continuous spaces, most
of the published work is related to the use of function
approximation techniques. Relevant to our approach,
Gaussian processes have been used before to represent
value functions (Deisenroth, Peters, & Rasmussen,
2008; Engel, Mannor, & Meir, 2003, 2005; Rasmussen

& Kuss, 2004) and, more recently, to represent transi-
tion function models with very promising results
(Deisenroth & Rasmussen, 2011; Deisenroth,
Rasmussen, & Fox, 2011; Deisenroth, Rasmussen, &
Peters, 2008; Murray-Smith & Sbarbaro, 2002;
Rasmussen & Deisenroth, 2008).

In Bou Ammar, Eaton, Ruvolo, and Taylor (2015),
the authors describe an unsupervised manifold align-
ment to learn an inter-state mapping to transfer sam-
ples between task domains. The mapping learned is
between states, while our approach learns a model of
differences between probability transition functions.
We are directly learning a new transition function with
our synthetic samples, while they map from states to
trajectories and back to states to learn a new policy.
Both approaches are not really comparable; our
approach learns with about an order of magnitude of
fewer episodes (they reported 300 episodes for the cart-
pole and over 3000 for the quadcopter) as will be seen
in Section 5. On the other hand, their approach is able
to map between different tasks while ours is restricted
to transfer between domains with the same state and
action spaces.

Garcia, Munoz de Cote, and Morales (2013) use
Gaussian processes to learn a task’s transition function
and study how hyper-parameters—which give informa-
tion about the form of the function—can be used as a
means to transfer qualitative information across tasks.
In Garcia, Munoz de Cote, and Morales (2014), the
authors extended the previous idea by using a new
Bayesian rule for combining hyper-parameters across
the source and target tasks that take into account the
uncertainty in the new task data. These works are simi-
lar to this paper in that they all use Gaussian processes
to work directly on continuous state and action
domains, but differ in that here we focus on generating
new instances based on subgroups of instances in
related tasks, whereas Garcia et al. (2013) and Gracia
et al. (2014) focus on transferring qualitative informa-
tion in the form of hyper-parameters.

Against this background, this work is inspired by
recent advances in knowledge representation tech-
niques, specifically in the work by Triguero, Derrac,
Garcia, and Herrera (2012), that generate new informa-
tive prototypes for classification tasks. We present a
new method called ‘‘Trapper Keeper’’ (TRAnsfer
PrototyPE geneRation) to generate, contrary to previ-
ous approaches, new prototypes to learn (with fewer
instances) the target task.

3 Background

RL refers to the problem of learning how to interact
with an environment in order to maximize the expected
sum of rewards. RL can be described by an MDP
(Puterman, 1994), defined by hS,A,P,Ri, where S is the

Munoz de Cote et al. 3

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

set of states, A is the set of possible actions that the
agent may execute, P : S 3 A 3 S ! ½0, 1" is the prob-
abilistic state transition function, R : S 3 A! R is the
reward function that defines the goal and measures the
desirability of each state and a policy p : S ! A is a
function that maps states to actions (see Sutton &
Barto, 1998, for more details). In this work we define
‘‘task’’ as an MDP, so ‘‘task’’and ‘‘MDP’’ will be used
interchangeably. Furthermore, in the case of continu-
ous domains, S =RD and A=RF , where D and F are
the dimensions of the state and action features vector
respectively. Function approximators can be used to
represent the state transition function P and the policy
function p. In this work, we use Gaussian processes to
represent the state transition function.

A Gaussian process is a generalization of the multi-
variate Gaussian probability distribution. It is often
denoted by GP(m, k) and specified by a mean function
m(#) and a covariance function k(# , #), also called a
kernel. Given a set of input vectors xi arranged as a
matrix X= ½x1, . . . , xn" and a vector of samples or
training observations y= ½y1, . . . , yn"T, Gaussian pro-
cess methods, for regression problems, assume that the
observations are generated as yi = h(xi)+ e, where
h(xi) follows a multivariate Gaussian distribution and e
is additive noise that follows an independent and iden-
tically distributed Gaussian distribution with zero mean
and variance s2

e (e;N (0,s2
e)).

Given a Gaussian process model of the latent func-
tion h;GP(m, k), it is possible to predict function values
for an arbitrary input x$. The predictive distribution of
the function value h$= h(x$) for a test input x$ is
Gaussian distributed with mean and variance given by

Eh½h$"= k(x$,X)(K+s2
eI)
%1y ð1Þ

varh½h$"= k(x$, x$)% k(x$,X)(K+s2
eI)
%1k(X, x$) ð2Þ

where K 2 Rn 3 n is the kernel matrix with
Kij = k(xi, xj).

The covariance function k commonly used is the
squared exponential kernel

k(x, x0)=a2 exp (% 1

2
(x% x0)TL%1(x% x0)) ð3Þ

with L=diag(½‘2
1, . . . , ‘2

n") and ‘k for k = 1, . . . , n,
being the characteristic length scales and s2

e the noise
term. The parameter a2 describes the variability of the
latent function h. The parameters of the covariance
function or hyper-parameters of the Gaussian process
(a2, ‘, s2

e) are collected within the vector u. The hyper-
parameters define the shape of the functions in the prior
distribution. The kernel hyper-parameters are often
optimized to adjust the prior Gaussian distribution to
the data, using evidence maximization (see Rasmussen

& Williams, 2006, for more details on Gaussian pro-
cesses and evidence maximization).

In what follows we will describe a new way to trans-
fer knowledge between tasks that involves learning both
transition and policy functions and a model of differ-
ences between probability transition functions (in the
source and target tasks)—all of these through Gaussian
processes.

4 Transfer learning by synthesis of
samples

Defining models for dynamic systems is not an easy
task and requires expert knowledge. The RL paradigm
has been used to learn such models and is becoming
increasingly popular. This is due to the fact that it does
not require a predefined model of the dynamic system.
In the traditional RL paradigm, the agent learns the
system dynamics and a control policy (given a goal)
while exploring the environment, and the policy con-
verges to the (near) optimal policy in the limit.
However, this learning process is slow, usually requires
a discrete representation and once a policy is learned it
cannot be used for a new task, even if it is similar to
the original task.

TL has been used as an option to reduce the learning
time (i.e. the number of instances needed to learn a
task) by reusing knowledge acquired in related tasks.
There are several valid definitions of TL for RL tasks.6

In this work we focus on a dynamics transfer problem
as defined in Lazaric (2008, def. 3.3).

Definition 1. Dynamics transfer problem. A dynamics
transfer problem is one in which the source and target
tasks share the same context (i.e. state and action space)
and the same reward function. The objective is to transfer
relevant knowledge to improve an RL algorithm in terms
of its learning speed, accumulated reward and
performance.

The three objectives in the dynamics transfer prob-
lem definition can be defined as follows.

Performance (P). This is the value at convergence. Let
ri denote the reward of episode i, and then

P=
rT + rT%1 + rT%2

3
ð4Þ

Learning speed (T). The number of sample instances
needed for an RL algorithm to learn its task. In prac-
tice, this is calculated as the elapsed number of episodes
before reaching 95% of its final performance

min
t
ft 2 f1, . . . , Tgjri (P0:95g ð5Þ

Accumulated reward (R). Sum of rewards over all
episodes

4 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

R=
XT

i= 1

ri ð6Þ

Within the dynamics transfer problem we assume the
source and target tasks are represented by continuous
state and action spaces, and such spaces are shared
among the tasks. Within this problem, there are differ-
ent kinds of knowledge that can be transferred across
tasks: policies, value functions, instances or structural
knowledge (e.g. hyper-parameters). In this work, we
transfer two types of knowledge from source to target
tasks: policies and the use of state transition instances
to learn transformations that generate new prototypes
for the target task. We do policy transfer in a quite tri-
vial way and it is not central to this paper. We do so to
jump-start the learning process domain (this is impor-
tant in robotics tasks as in the quadcopter–helicopter)
as learning from scratch will crash the vehicle before
learning.

In detail, given state transition instances and a state
transition function from the source task, the steps fol-
lowed by Trapper Keeper are:

) apply the current policy (initially the final policy
from the source task) in the target task to generate
state transition instances of the first episode;

) use these instances to learn a probabilistic state
transition function for the target task (see Section
4.1);

) learn a function that represents the difference
between the target and the source state transition
functions (see Section 4.2);

) select a set of state transition instances from the
source task (see Section 4.3);

) generate new state transition prototypes for the tar-
get task using the selected instances and the differ-
ence function learned in the previous step;

) use the generated prototypes and the original
instances from the target task to learn a new state
transition function and use it to learn a new policy.

These steps are repeated until convergence. In the
following subsections these steps are described in more
detail.

4.1 Model estimation

For RL, we use model-based learning, which unlike
model-free learning, learns a model of the task (i.e. its
transition and reward function) before putting it into
action in the real task. Therefore, the effectiveness of
the learned policy highly depends on the precision of
the task model. In our work, the agent models the task
by estimating the transition function, which is then used
to learn the policy.

When the agent is in the initial learning episodes,
there is not enough information for a good assessment

of the task, and therefore the executed policy is subop-
timal. In our proposed approach (Algorithm 1), we first
use the learned policy to initialize the policy for the tar-
get task. The source policy will (in most circumstances)
not solve the target task (Garcia et al., 2013; Taylor
et al., 2008); however, it usually helps jump-start the
initial performance, and is usually enough to collect ini-
tial samples of the target task.7

The state transition function is learned as a non-
parametric Gaussian process using available data,
going from a prior distribution of transition functions
to a posterior one. The learned Gaussian process model
internally represents the dynamics in the system (i.e.
the transition function). The learned transition model
is then used to simulate the system and reason for the
long-term behavior without the need of interaction
(batch learning). The policy can be represented with
any approximator, but in this work we decided to use
the approach proposed by Deisenroth and Rasmussen
(2011) where a policy is computed by using estimates of
the gradient of the value function according to the
simulations and after optimizing this policy. This opti-
mized policy is then used to interact with the environ-
ment to obtain more instances (state, action, successor
state) and continue this process in a loop until some
stopping criterion (e.g. change in value function
between iterations is small enough) is met.

More precisely, the state transition function is
modeled as a Gaussian process, where the next state is
defined as xt = f (xt%1, at%1), f ;GP(m, k), where xt 2 S

is the state of the agent at time t, and is approximated
by function f. The transition model f is distributed as
a Gaussian process with mean function m and covar-
iance function k. The samples of the task
xt%1, at%1ð Þ 2 RD+F and the corresponding

Dt = xt % xt%1 + e 2 RD, e;N 0,Seð Þ, are the training
targets of the latent function f. Dt is used instead of xt

as the differences vary less than the original function
and learning the differences is better than learning the
function values directly.

The objective in RL is to find a policy p: S 7!A that
maximizes the expected accumulated reward

V p(x0)=
XT

t = 0

E R(xt)½ ", x0;N m0,S0ð Þ ð7Þ

which is the sum of the expected rewards R(xt) obtained
from a trace (x0, . . . , xT), T steps ahead. Here p is a
continuous function approximated by ~p, using a set of
parameters c. For most continuous tasks, it is useful to
use a saturating reward function R(xt)= exp (% d2=s2

r)
that rewards when the Euclidean distance d of the cur-
rent state xt to the target state xtarget is small enough,
while s2

r controls the width of R.
We use policy search, as in Deisenroth and

Rasmussen (2011), to find the policy ~p, which is

Munoz de Cote et al. 5

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

approximated by a radial basis function network with
Gaussian basis functions given by

~p(x$)=
XN

s= 1

bskp(xs, x$)=bT
pkp(Xp, x$) ð8Þ

where x$ is a test input, kp is the squared exponential
kernel and bp =(Kp +s2

pI)
%1yp is a weight vector. Kp

is formed as (Kp)ij = kp(xi, xj), where yp = ~p(Xp)+ ep,
(ep;N (0,s2

pI)) represent the training targets for the
policy, with ep measuring noise. Xp = x1, . . . , xN½ ",
xs 2 RD, s= 1, . . . ,N , are the training inputs. The sup-
port points Xp and the corresponding training targets yp

are a pseudo-training set for the preliminary policy, this
pseudo-training set will be later replaced by actual target
training data as the agent collects such information.

Once the task model has been learned, we use
PILCO’s algorithm to search for the policy on the
learned model. Our proposed approach is not con-
strained to work with PILCO, as other policy search
algorithms could be used. However, PILCO is an algo-
rithm that has shown a good performance in domains
with continuous states and actions. Besides, the main
emphasis of the paper is not on the way to learn a prob-
abilistic transition function or the function policy, but on
the proposed technique for TL in continuous domains.

4.2 A model of differences

We use two Gaussian processes to estimate the source
and the target task transition models (see Algorithm 2).
Let ~xsource = ½xTaT"T, ~xsource 2 RD+F denote a sample
from the source task, where D is the dimension of the
state vector x and F is the size of the action vector a.
Let ~ysource 2 RD denote an output of the latent transi-
tion function fsource. In the same way, the samples from
the target task, are denoted by ~xtarget 2 RD+F and their

corresponding output ~ytarget 2 RD, to specify the transi-
tion function ftarget.

Trapper Keeper starts with the policy from the
source task to get samples for the first episode. In the
first interaction with the environment, instances of the
form hs, a, r, s0i are collected, where ~xsource = ½sTaT"T,
~ysource = s0 are taken, as shown in lines 1 and 2 of
Algorithm 1. For the target task, new prototypes are
generated by taking a subset of instances of the source
task and the target task instances.

The generation of new prototypes is performed by
genPrototypes() (Algorithm 2). The crux of this function
is to learn a model of differences between the source
and target tasks’ state transition functions. The learned
model is an estimator of how different the task’s func-
tions are. This function is then used to transform
source instances into target prototypes. In more detail,
two Gaussian processes, one for the source task transi-
tion function fsource and one for the target task transi-
tion function ftarget, are learned using only the available
samples in each task (lines 2 and 3). A third Gaussian
process model, ft is learned as an estimator of the dif-
ference between the first two models (lines 5–7), using
instances selected by a filter function (line 4). As Taylor
et al. (2008), Lazaric et al. (2008), Garcia et al. (2013),
Torrey et al. (2005), Ferguson and Mahadevan (2006)
and other authors have already stated, not all source
task instances are good candidate instances to be trans-
ferred to a related task. Against this background we
use a function filter() to select instances that we believe
are most relevant to be transferred. Once a subset of
instances from the source task is selected, it is trans-
formed into a set of synthetic prototypes for the target
task using ft. There are different approaches in the lit-
erature to select the most relevant instances to be trans-
ferred. Some of the most relevant approaches are
presented next.

Algorithm 1: Trapper Keeper

Require: ~Xsource, ~Ysource, csource
1: ~p p(csource)
2: Interact with target environment, apply ~p to obtain samples

of the form ~xtarget, ~ytarget

3: repeat
4: ~Xt , ~Yt genPrototypes(~Xsource, ~Ysource, ~Xtarget, ~Ytarget)
5: // learn a Gaussian process fv for each variable v from the

state vector
6: Use ~Xt [~Xtarget, ~Yt [~Ytarget to learn task model f
7: repeat
8: Evaluate policy ~p on f to get V ~p

9: Improve ~p //updating parameters c using PILCO
10: until convergence
11: ~p p(c)
12: Interact with environment applying ~p to obtain more

samples
13: until task learned

Algorithm 2: Prototype Generation

1: function GENPROTOTYPES (~Xsource, ~Ysource, ~Xtarget,
~Ytarget)

2: Learn Gaussian process fsource, using ~Xsource, ~Ysource

3: Learn Gaussian process ftarget, using ~Xtarget, ~Ytarget

4: ~Xt filter(~Xsource, ~Ysource, ~Xtarget, ~Ytarget)

5: for all ~x 2 ~Xt do
6: yd = fsource(~x)% ftarget(~x)
7: Yd =Yd [fydg
8: end for
9: Learn Gaussian process ft , using ~Xt , ~Yd

10: for all ~x 2 ~Xt do
11: yt = fsource(~x)% ft(~x)
12: Yt =Yt [fytg
13: end for
14: return ~Xt,Yt

15: end function

6 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

4.3 Filtering

Not all sampled instances from the source task are use-
ful for learning the target task. Many approaches in the
literature focus on the problem of selecting which
instances are most relevant to be transferred between
tasks. The function filter() used in Algorithm 2 is a call
to any algorithm that filters out irrelevant instances.
We propose a simple filtering technique based on the
idea that the most relevant instances from the source
task are those far (in terms of distance) from the experi-
enced instances in the target task. The rationale behind
this simple idea is that including instances from the
source task that are close to instances from the target
task will not provide new information, as we already
have instances in that region from the target, and may
introduce noise to the model. We call such filter the
naı̈ve filter. Although we propose this naive filter, more
sophisticated filters might be used as well, but as will
be shown in the experimental section, we claim the
sophistication of the filtering technique to be of minor
importance.

In more detail, let us assume that we have m and n
instances from a source and target task respectively,
where m* n and that m instances are enough to solve
(learn) the source task. We make the initial assumption
that the target task will require close to m instances to
be learned. If such assumption is true the agent would
require m% n more instances for the target task to be
learned. We propose to initially generate m% n proto-
types so that together with the n instances already col-
lected, the agent can approximate a solution to the
target task. Furthermore, as the agent gathers new sam-
ples, prototypes are gradually replaced by true instances
obtained directly in the target task, maintaining always
m instances for the target task. This assumption was
designed as an upper limit to the number of generated
synthetic samples, but we are aware that it is also pla-
cing a limit to the number of samples needed for the tar-
get task. Without any additional knowledge about the
target task, it is not possible to know in advance the
number of samples needed to learn any model.8 An
obvious and simple extension is to remove this con-
straint over the target task and allow its number of

samples to be increased when needed. In our experi-
ments we did not need to increase the number of sam-
ples for the target task and it is left as future work.

We compare two filtering algorithms. The first one
(the naı̈ve filter in Algorithm 3) is a simple filter that
considers relevant the most distant instances, where a
Euclidean distance is used between state-action pairs of
the source and target tasks. Note that line 4 of the algo-
rithm finds the closest neighbor j 2 ~Xtarget to each
source task i 2 ~Xsource .

The second approach is based on Lazaric’s TL algo-
rithm. The algorithm was designed for tasks described
by continuous states and discrete actions. We modified
the algorithm to work with continuous actions (see
Algorithm 4). In their approach, the tasks are restricted
to having discrete actions and instances are clustered
according to the selected actions. Instead of clustering,
the action variables are considered as variables of state-
action pairs and taken into account for the compliance
and relevance metrics (see Lazaric et al., 2008, for more
details).

Task compliance measures the probability of f̂ being
the model that generated the instances ~Xtarget, as
described in equation (9) (for more detail on task com-
pliance please refer to Lazaric et al., 2008)

Lcompl =
1

j~Xtargetj

X

i

P(f̂ j~xi, target) ð9Þ

The metric task compliance uses the available instances
in the source task as well as the ones in the target task
and returns the probability that the source task has gen-
erated the target task’s instances. The sample relevance
metric is calculated for each of the samples, using the
compliance previously calculated. rj indicates the per-
centage of samples taken from the source task, ordered
according to relevance.

5 Experiments

The experiments we present are designed to show how
our proposed technique, embedded in the Trapper

Algorithm 3 Naı̈ve filter

1: function Naı̈veFilter(~Xsource, ~Ysource, ~Xtarget, ~Ytarget))

2: Initialize d as an m 3 n matrix, where m= j ~Xsourcej and
n= j ~Xtargetj

3: dij distance(~xi,~xj), 8i 2 ~Xsource, 8j 2 ~Xtarget

4: di minj dij, 8i 2 ~Xsource, 8j 2 ~Xtarget

5: Sort di rows in ascending order
6: ~Xt last k elements in d (where k=m% n)
7: return ~Xt

8: end function

Algorithm 4 Lazaric’s filter

1: procedure LAZARIC’S FILTER(~Xsource, ~Ysource, ~Xtarget,
~Ytarget)

2: Let m= j ~Xsourcej, n= j ~Xtargetj and k=m% n

3: Dk compliance(f ~Xsource, ~Ysourceg, f ~Xtarget, ~Ytargetg)
4: for all f~xj, ~yjg 2 f ~Xsource, ~Ysourceg do

5: rj = relevance(f~xj, ~yjg, f ~Xtarget, ~Ytargetg)
6: end for
7: ~Xt kDk Samples taken from f ~Xsource, ~Ysourceg

proportionally to rj

8: return ~Xt

end procedure

Munoz de Cote et al. 7

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

Keeper algorithm fares. We perform tests in three tasks
and measure performance, convergence time9 and accu-
mulated reward as defined in equations (4)–(6)
respectively.

We compare Trapper Keeper against a benchmark
learning algorithm that does not transfer knowledge,
two state-of-the-art TL algorithms and a naı̈ve transfer
technique. In detail, the comparison algorithms are as
follows.

) PILCO. A state-of-the-art RL batch learning algo-
rithm proposed in Deisenroth and Rasmussen
(2011) specially designed for continuous domains.
We used PILCO as the benchmark algorithm for
comparison, as it is a tabula rasa learning algorithm
that needs to learn from scratch each time a task
changes. The kernel hyper-parameters were initia-
lized as proposed in Deisenroth and Rasmussen
(2011).

) Lazaric’s filter. A state-of-the-art TL algorithm
proposed in Lazaric et al. (2008) that was adapted
to run with continuous actions.

) QTL. A TL technique proposed by Garcia et al.
(2013) that transfers qualitative information using
hyper-parameters from Gaussian processes.

) Transfer all. A technique that transfers all the sam-
ples from the source task.

Furthermore, we study different combinations of
Trapper Keeper and filters. These combinations are:

) TKall– transform all samples from the source task;
) TKsimple– transform a subset of source task samples

using a simple filter;
) TKlaza– transform a subset of source task samples

using Lazaric’s filter.

The experiments were performed in three bench-
mark tasks in the RL and control literature: the
inverted pendulum on a cart and the mountain car
task, as described in Sutton and Barto (1998), and a
more realistic quadcopter control task with transfer to
a helicopter. In all benchmark tasks, the tests were
repeated five times with the initial state randomly
selected. Figures 2, 3 and 4 show the accumulated
reward of each algorithm for each learning episode
(top part) and the corresponding standard deviation
(bottom part).

This experimental setting was designed to test how
the proposed algorithm (Trapper Keeper) performs on
incrementally more challenging tasks along a different
axis and compared to the most suitable algorithms
found in the literature. Also, we show that generating
prototypes with Trapper Keeper outperforms—across
all measures—other transfer techniques like filters. We
present such results next by tasks.

5.1 Inverted pendulum on a cart

This task consists of a pendulum attached to a cart that
moves along a horizontal axis when a force is applied
(as seen in Figure 1(a)). The objective is to raise and
balance the pendulum by swinging it. The agent must
learn to apply actions (in this case forces) that tempo-
rarily get away from the target state in order to finally
reach the desired state. The agent learns to swing the
pendulum up and balance it with the same policy,
which in other approaches often requires separate con-
trols, and thus it is not trivial to solve.

Here we consider the inverted pendulum problem
with continuous action and state spaces, as defined in
Deisenroth and Rasmussen (2011). In this scenario, not
only has the pendulum to be swung up and balanced,
but it has to be maintained at some particular point as
well, which makes it a more difficult task than only bal-
ancing the pendulum. In the continuous scenario, a
state x is formed by the position x of the cart, its velo-
city _x, the angle u of the pendulum, and its angular velo-
city _u. The reward function is expressed as

r(x)= exp (% 1

2
ad2) ð10Þ

where a is a scale constant of the reward function (set
to 0.25 in the experiments) and d is the Euclidean dis-
tance between the current and desired states, expressed
as d x, xtarget

! "2
= x2 + 2xl sin u+ 2l2 + 2l2 cos u, where

l is the length of the pendulum. The reward remains
close to zero if the distance of the pendulum tip to the
target is far away. The source task consists of swinging
a pendulum of mass 0.5 kg while in the target tasks the
pendulums weights are changed to 0.25 kg (0:5 3), 1 kg
(2 3), 1.5 kg (3 3) and 2 kg (4 3), respectively. In the

Figure 1. Two benchmark domains commonly used in RL
experimentation: (a) inverted pendulum on a cart; (b) mountain
car.

8 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

experiments, l = 0:6 m, x 2 (% ‘,‘), u 2 ½%180, 180"
and the action or force f 2 ½%1, 1". The number of sam-
ples used by PILCO to learn the task with mass = 1 kg
(i.e. potential number of samples to transfer and total
number of samples used to learn) was 285=m on aver-
age. From these, the agent collects 17= n sample
instances from the target task on the first episode (line 2
in 1) to then generate 268 (i.e. m% n) prototypes ini-
tially. On each episode, new knowledge (instances) is
acquired and fewer prototypes are generated, so that on
episode t there will be m% tn prototypes generated. If
m < tn, no more prototypes are generated.

The results in terms of R, P and T across algorithms
and specific tasks are shown in Table 1. In terms of the
accumulated reward obtained by the set of algorithms,
as seen in the column labeled ‘‘R’’ in Table 1 and dis-
played in Figure 2, we can draw the following
conclusions.

) Transferring all instances from one task to another,
without processing or filtering the samples causes
negative transfer.10 In other words, the source and
target tasks are not similar enough so as to directly
use all the instances from the source without ham-
pering the model of the target task.

) The second to worst model is PILCO, which clearly
reflects the benefits of TL, at least in this domain.

) Using some filters to transfer selected instances can
help to improve the convergence of the algorithms.
This is especially true when the target task is very
similar to the source task, with superior perfor-
mance to QTL, and to a lesser extent with fewer
similar domains, where QTL performs better.

) Using filters and generating prototypes with
Trapper Keeper outperforms the benchmark (learn-
ing from scratch using PILCO) and outperforms all
the other approaches in terms of accumulated
reward, where TKsimple and TKlaza clearly improve
over the other approaches in the learning curves.

) Performance (column labeled ‘‘P’’ in Table 1) mea-
sures the reward obtained when the algorithm con-
verges (calculated as the average over the last three
episodes). As expected, the convergence perfor-
mance of all algorithms is similar (except when
transferring all samples). This is a sign that the
algorithms converge to near optimal policies. In
this case, QTL, which transfers qualitative knowl-
edge, results in the best performance on conver-
gence three out of four times.

) In terms of learning time (column ‘‘T’’ in Table 1),
results are mixed, where for similar enough tasks
Trapper Keeper with any filtering technique con-
verges faster than any other transfer technique.
However, as tasks become less similar, transferring
qualitative information between tasks boosts learn-
ing times the most.

5.2 Mountain car

This task, as presented in Sutton and Barto (1998),
consists of a car in a valley between two hills where the
agent must learn a strategy to take the car up to the
right side hill and stay on top. The car cannot drive up
at full throttle, so a strategy to gain kinetic energy
must be learned. The strategy to reach the top consists
of driving up the opposite hill to gain speed, which
implies moving away from the objective before reach-
ing it.

The problem is normally described using discrete
variables for actions (left, zero, right), as in Sutton and
Barto (1998). Here we describe the problem using con-
tinuous spaces for states and actions. With this in mind,
an agent’s state is a vector x=(x, _x), where x is the
position on the horizontal axis and _x is the velocity of
the car on the horizontal plane. The action or force f is
a single variable corresponding to the force applied to
the car. The initial state is x0=(% 5, 0), and the goal
state is whenever x . 0:5; however, here we consider a

Table 1. Tabular results in the inverted pendulum task. Columns labeled 0:5 3 , 2 3 , 3 3 , 4 3 represent 0.5, 2, 3, 4 times
(respectively) the mass of the pendulum in original task (0.5 kg). R: accumulated reward; P: performance; T: convergence time.
Numbers in bold represent the best result in its category.

Algorithm 0:5 3 2 3 3 3 4 3

R P T R P T R P T R P T

PILCO 216.00 33.1 8 206.10 35.54 10 218.63 33.33 22 204.42 29.72 25
QTL 267.56 33.62 8 236.43 35.66 8 602.55 32.68 10 539.79 29.97 12
Transfer all 42.10 5.3 NC 48.16 4.61 NC 100.25 5.87 NC 88.46 3.75 NC
Simple filter 296.41 33.23 7 342.51 34.06 8 541.38 31.95 15 564.21 28.66 15
Lazaric’s filter 336.70 33.00 6 359.73 33.61 7 560.69 32.07 15 605.71 29.36 13
TKall 200.58 32.01 10 217.43 34.61 10 256.90 31.58 14 237.00 29.81 25
TKsimple 344.99 33.15 6 380.94 33.45 5 641.18 31.79 21 613.44 28.85 14
TKlaza 346.35 33.06 5 383.37 34.00 6 613.58 31.19 13 616.58 29.19 14

Munoz de Cote et al. 9

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

more challenging task of stopping the car as soon as it
reaches the right hill, so the goal state is xtarget=(1, 0).
The reward function is expressed as equation (10) where
a is a scale constant of the reward function (set to 0.25
in the experiments) and d = x% xtarget . The agent
receives a zero reward at every time step when the goal
is not reached. In the experiments, x 2 (% ‘,‘) and
f 2 ½%1, 1".

We consider as the source task the one specified in
Sutton and Barto (1998). For target tasks, we tested the
same problem with a modified engine power of 0:5 3 ,
1:5 3 and 3 3 the power of the source task. In this
case, it is important to notice that with 3 3 the power
of the source, the car can drive up at full throttle with-
out swinging. The number of samples used by PILCO
to learn the task with engine power = 1 (i.e. potential
number of samples to transfer and total number of sam-
ples used to learn) was 400=m. From these, the agent
collects 40= n sample instances from the target task on

the first episode to then generate (i.e. 360=m% n)
prototypes.

As can be seen in Table 2, the results lead to the fol-
lowing conclusions.

) Again, transferring all the instances without filters
produce the worst results in terms of accumulated
reward (column ‘‘R’’) followed by learning from
scratch (PILCO), except for 3 3 where the car is
able to climb directly the hill. In this case, PILCO
outperforms all the other transfer strategies (i.e. it
produces more damage to transfer), except for TK
which is superior to PILCO even in this particular
case.

) The performance (column ‘‘P’’) again is similar in
all the approaches, except for the case of transfer-
ring all the instances and for PILCO which shows a
poor performance in the 0:5 3 and 2 3 cases and
the best performance for the 3 3 case.

Figure 2. Learning curves in the inverted pendulum when the target task is (a) 0:5 3 , (b) 2 3 , (c) 3 3 and (d) 4 3 (respectively)
the mass of the pendulum in the original task (0.5 kg). For each test algorithm, the averages and standard deviations are shown in the
upper and lower subplots (respectively).

10 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

) In terms of number of episodes there are mixed
results but, in general, Trapper Keeper shows the
best overall performance.

The results show that TL techniques can outperform
learning from scratch (the benchmark algorithm), espe-
cially when tasks are closely related. Also, note that com-
bining tuple transformations (Trapper Keeper) with any
filtering technique can outperform any other TL tech-
niques, as was also the case in the previous domain.

5.3 Quadcopter to helicopter

This task is the most complex and interesting experi-
ment in this paper. Here we seek to transfer knowledge
from a quadcopter to a helicopter. The task consists of
finding a policy to move the aircraft from an initial (on
land) position to a desired position, specified by the
(xtarget, ytarget, ztarget) coordinates. The agent must learn
to take off, deal momentarily with the ground effect,11

reach a specific three-dimensional position and keep the
vehicle stabilized at that position. This task is learned in
a quadcopter and then transferred to a helicopter which
is a related vehicle, but with different dynamics.

Although both aircraft have the same state and
action variables, they behave differently due to differ-
ent aerodynamics. The quadcopter has four propellers
which generate lift, the change in the speed of the pro-
pellers induces a change in the altitude of the quadcop-
ter and a change in position. In the quadcopter, the
difference between the torque generated by the motors
is used to change the yaw angle. On the other hand, the
helicopter has a main rotor which generates lift and
changes position by moving the blades’ angle as they
rotate around the main axis. The helicopter also has a
tail rotor to compensate the torque generated by the
main rotor. So, in order to control the yaw angle the
helicopter changes the pitch in the tail rotor’s blades.

Both quadcopter and helicopter have a state vector
with 12 variables, comprising its position (x, y, z),

orientation (roll f, pitch u, yaw v), velocity (_x, _y, _z) and
angular velocity (_f, _u, _v). All of the state and action
variables are continuous. We define the goal position as
½x, y, z"= ½%1, % 1, 1:5", starting from ½x, y, z"= ½0, 0, 0".
The reward function obeys equation (10), with a set to
0.25 and d evaluated as d x, xtarget

! "2
= x2 + y2 + z2.

This task requires the flight to be stabilized with
high precision with a large number of continuous state
variables. As in the previous sections, we performed
experiments with and without TL, with and without
prototype generation and with and without filtering
instances. For simulation purposes, and as a reference,
we use V-REP (Robotics, 2013), which is a simulator,
where the dynamic models for the quadcopter and heli-
copter have been implemented. In the experiments we
used the values specified in V-REP with,
x, y, z 2 (% ‘,‘), row, pitch and yaw angles
2 ½%180, 180", roll, pitch and yaw actions 2 ½%1, 1" and
for throttle 2 ½0, 1" . The number of samples used by
PILCO to learn the task with the quadcopter (i.e.
potential number of samples to transfer and total num-
ber of samples used to learn) was 1500=m. From
these, the agent collects 50= n sample instances from
the target task on the first episode to then generate (i.e.
1450=m% n) prototypes.

From Figure 4 and Table 3 we can observed the
following.

) The proposed approach with any filter is clearly
superior to the other approaches in terms of accu-
mulated reward and convergence time. All the
transfer approaches, except when directly transfer-
ring all the instances, are superior to PILCO.

) The final performance of the all the algorithms,
except when transferring all the instances without
transforming, are similar and superior to the V-
REP simulator, as they learn to compensate the
inertia of the helicopter by tilting pitch and roll
angles before the helicopter reaches the target

Table 2. Tabular results in the mountain car task. Columns labeled 0:5 3 , 2 3 , 3 3 represent 0.5, 2, 3 times (respectively) the
power of the car in the original task. R: accumulated reward; P: performance; T: convergence time. Numbers in bold represent the
best result in its category.

0:5 3 1:5 3 3 3

Algorithm R P T R P T R P T

PILCO 26.39 3.01 4 173.72 21.94 7 265.48 32.60 7
QTL 51.21 5.55 6 222.60 23.64 2 206.60 25.31 5
Transfer all 17.56 2.54 NC 52.90 5.22 NC 64.05 6.87 NC
Simple filter 45.81 4.32 6 186.32 25.32 6 202.70 30.23 7
Lazaric’s filter 46.78 5.23 6 191.28 20.47 4 223.68 27.64 9
TKall 50.57 5.31 6 232.47 24.74 5 252.73 30.41 6
TKsimple 51.34 5.30 4 249.75 25.13 4 268.78 32.19 6
TKlaza 54.70 5.84 4 289.75 24.23 3 279.78 32.34 5

Munoz de Cote et al. 11

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

position in contrast to V-REP’s autopilot which
tends to overshoot.

5.4 Overview of the experiments

The experiments performed in Sections 5.1, 5.2 and 5.3
were used to evaluate different TL strategies and with-
out TL (PILCO). From the different experiments we
can conclude the following.

) As expected, TL can significantly reduce the num-
ber of episodes required for convergence and
increase the total accumulated rewards with a simi-
lar final performance as without using any TL.

) Transferring source instances without any
filtering severely harms the learning process.
However, selecting some of them can produce clear
benefits.

Figure 3. Learning curves in the mountain car task when the target task is (a) 0:5 3 , (b) 2 3 and (c) 3 3 (respectively) the car
power with respect to the original task. For each test algorithm, the averages and standard deviations are shown in the upper and
lower subplots (respectively).

Table 3. Total reward, final performance and convergence time for the helicopter task.

Algorithm Total reward Final performance Convergence time

V-REP Autopilot (as reference) - 126.79 -
PILCO 1809.44 132.50 24
QTL 2225.46 131.99 22
Transfer all 467.89 22.5 NC
Simple filter 2388.77 128.69 22
Lazaric’s filter 2578.79 129.77 20
TKall 2811.15 131.33 18
TKsimple 3169.64 131.39 17
TKlaza 3212.75 130.29 15

12 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

) Generating prototypes is the best option when com-
bined with a filtering mechanism, although the par-
ticular filter used to select instances seems not to be
very relevant.

6 Conclusions and future work

We have presented a novel TL approach for continu-
ous state and action spaces. The algorithm learns a dif-
ference function between the source and the target task
and uses it to generate prototypes using selected
instances from the source task to learn faster. We per-
formed several experiments under different TL condi-
tions and show that the proposed approach can help to
significantly improve the learning process.

As future work we would like to transfer from sev-
eral tasks, where a more sophisticated filter mechanism
needs to be defined. Also we would like to consider
domains with different state and action vector variables
and we will like first to consider domains where the
state and action variables of one of the tasks is a subset
of the other task.

Notes

1. We cannot expect a robot to interact with the environ-
ment thousands of times just to train it for a simple task.

2. As in Taylor and Stone (2009), we refer to the term task
as the specification of the domain and its objective (i.e.
the MDP specification).

3. We use the terms tuples and instances indifferently
throughout the document.

4. An example instance could be of the form (state, action,
next state). See Section ‘‘3’’ for a formal definition of this
concept.

5. The Q-function is a matrix of states and actions that cap-
tures the expected sum of discounted rewards for each
state and action pair.

6. We refer the reader to (Taylor & Stone, 2009) and
Lazaric (2008) for a thorough examination of TL defini-
tions and objectives.

7. Note that in the general case the source policy will not
help as a starting point, but for robotics applications
like the ones presented in this work starting with an
initial (not random) policy is needed to prevent the
robot from performing actions that could harm the
hardware.

8. The authors are not aware of any PAC-learning results
for Gaussian processes, but normally the number of
samples needed to guarantee some degree of perfor-
mance is too large, especially for Gaussian processes
where it is desirable to keep this number as small as
possible.

9. Convergence time is defined in terms of episodes, where
an episode is a single interaction with the environment.

10. Negative transfer is an effect suffered when the knowl-
edge transferred between tasks results in a worst conver-
gence performance and/or accumulated reward
compared to learning the objective task from scratch.

11. Ground effect is an aerodynamic effect derived from air
hitting the ground when an aircraft is close to a surface
that makes harder to lift and control the aircraft.

Figure 4. Learning curves for the helicopter task using transfer learning from a quadcopter. The figure show the accumulated
reward of the V-REP simulator as reference (top figure) and the standard deviations (bottom figure).

Munoz de Cote et al. 13

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

References

Ammar, H., Tuyls, K., & Taylor, M. (2012). Reinforcement
learning transfer via sparse coding. In Proceedings of the
11th international conference on autonomous agents and
multiagent systems (Vol. 1, pp. 383–390).

Atkeson, C., & Santamaria, J. (1997). A comparison of direct
and model-based reinforcement learning. In IEEE interna-
tional conference on robotics and automation (Vol. 4, pp.
3557–3564). Piscataway, NJ: IEEE.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic program-
ming. Belmont, MA: Athena Scientific.

Bou Ammar, H., Eaton, E., Ruvolo, P., & Taylor, M. E.
(2015). Unsupervised cross-domain transfer in policy gra-
dient reinforcement learning via manifold alignment. In
Proceedings of the twenty-ninth AAAI conference on artifi-
cial intelligence (pp. 2504–2510). AAAI Press. Austin,
Texas, USA. AI Access Foundation.

Deisenroth, M., Peters, J., & Rasmussen, C. (2008). Approxi-
mate dynamic programming with Gaussian processes. In
American control conference (pp. 4480–4485).

Deisenroth, M., & Rasmussen, C. (2011). PILCO: A model-
based and data-efficient approach to policy search. In
L. Getoor, & T. Scheffer (Eds.), ICML (pp. 465–472).

Deisenroth, M., Rasmussen, C., & Fox, D. (2011). Learning
to control a low-cost manipulator using dataefficient rein-
forcement learning. In Proceedings of robotics: Science and
systems. Los Angeles, CA.

Deisenroth, M., Rasmussen, C., & Peters, J. (2008). Model-
based reinforcement learning with continuous states and
actions. In 16th european symposium on artificial neural
networks (pp. 19–24), Bruges, Belgium.

Dietterich, T. (2000). Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Artifi-
cial Intelligence Research, 13, 227–303.

Drummond, C. (2002). Accelerating Reinforcement Learning
by Composing Solutions of Automatically Identified Sub-
tasks. Journal of Artificial Intelligence Research, 16,
59–104.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets bell-
man: The gaussian process approach to temporal differ-
ence learning. In T. Fawcett, & N. Mishra (Eds.), ICML
(pp. 154–161). AAAI Press, Washington D.C.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement
learning with Gaussian processes. In Proceedings of the
22nd international conference on Machine learning - ICML
’05 (pp. 201–208), ACM International conference proceed-
ings series , Bonn, Germany.

Ferguson, K., & Mahadevan, S. (2006). Proto-transfer learn-
ing in markov decision processes using spectral methods.
In Proceedings of the ICML-06 workshop on structural
knowledge transfer for machine learning. Citeseer.

Garcia, E., Munoz de Cote, E., & Morales, E. (2013). Quali-
tative Transfer for Reinforcement Learning with Contin-
uous State and Action Spaces. In J. Ruiz-Schucloper, &
G. Sanniti di Baja (Eds.), 18th. iberoamerican congress on
pattern recognition (pp. 198–205). Springer-Verlag San-
tiago, Chile.

Garcia, E., Munoz de Cote, E. & Morales, E. (2014). Transfer
learning for continuous state and action spaces. Interna-
tional Journal of Pattern Recognition and Artificial Intelli-
gence, 28 1460007 (20 pages).

Hasselt, H. (2011). Reinforcement Learning in Continuous
State and Action Spaces. In Reinforcement learning: State
of the art. Springer.

Jaakola, T., Jordan, M., & Singh, S. (1995). On the conver-
gence of stochastic iterative dynamic programming algo-
rithms. Neural Computation, 6, 1185–1201.

Lazaric, A. (2008). Knowledge transfer in reinforcement learn-
ing (PhD Thesis). Politecnico di Milano, Italy.

Lazaric, A., Restelli, M., & Bonarini, A. (2007). Reinforce-
ment learning in continuous action spaces through sequen-
tial monte carlo methods. In Advances in neural
information processing systems. Citeseer.

Lazaric, A., Restelli, M., & Bonarini, A. (2008). Transfer of
samples in batch reinforcement learning. In Proceedings of
the 25th international conference on Machine learning -
ICML ’08 (pp. 544–551).

Martı́n, H. J., de Lope, J., & Maravall, D. (2011, March).
Robust high performance reinforcement learning through
weighted k-nearest neighbors. Neurocomputing, 74,
1251–1259.

Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A. (2008).
Transfer in variable-reward hierarchical reinforcement
learning. Machine Learning, 73, 289–312.

Murray-Smith, R., & Sbarbaro, D. (2002). Nonlinear adap-
tive control using non-parametric Gaussian process prior
models. In In 15th IFAC world congress on automatic con-
trol (pp. 21–26).

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the sixteenth interna-
tional conference on machine learning (pp. 278–287). Mor-
gan Kaufmann.

Ng, A., Kim, H., Jordan, M., & Sastry, S. (2004). Autono-
mous helicopter flight via reinforcement learning. In
S. Thrun, S. Lawrence & B. S. (Eds.), Advances in neural
information processing systems 16. Cambridge, MA: MIT
Press.

Puterman, M. (1994).Markov decision processes—discrete sto-
chastic dynamic programming. New York, NY: John Wiley
& Sons, Inc.

Rasmussen, C., & Deisenroth, M. (2008). Probabilistic infer-
ence for fast learning in control. Recent Advances in Rein-
forcement Learning, 5323(November), 229–242.

Rasmussen, C., & Kuss, M. (2004). Gaussian Processes in
Reinforcement Learning. Advances in Neural Information
Processing Systems, 16, pp. 751–759.

Rasmussen, C., & Williams, C. (2006). Gaussian Processes
for Machine Learning. International Journal of Neural Sys-
tems, 14(2), 69–106.

Robotics, C. (2013). V-rep pro edu, version 3.0.1 [Computer
software manual]. Retrieved from http://www.coppelia
robotics.com/

Silver, D., et al. (Eds.). (2005). Inductive transfer: 10 years
later workshop.

Soni, V., & Singh, S. (2006). Using homomorphisms to trans-
fer options across continuous reinforcement learning
domains. In AAAI (pp. 494–499).

Sutton, R., & Barto, A. (1998). Introduction to Reinforcement
Learning. MIT Press.

Taylor, M., Jong, N., & Stone, P. (2008). Transferring
instances for model-based reinforcement learning. Joint

14 Adaptive Behavior

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://www.coppeliarobotics.com/
http://adb.sagepub.com/

European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer Berlin Heidelberg.

Taylor, M., & Stone, P. (2009). Transfer learning for reinfor-
cement learning domains : A survey. Journal of Machine
Learning Research, 10, 1633–1685.

Taylor, M., Stone, P., & Liu, Y. (2007). Transfer learning via
inter-task mappings for temporal difference learning. Jour-
nal of Machine Learning Research, 8, 2125–2167.

Torrey, L., Walker, T., Shavlik, J., & Maclin, R. (2005).
Using advice to transfer knowledge acquired in one rein-
forcement learning task to another. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases. Springer Berlin Heidelberg (pp. 412–424).

Triguero, I., Derrac, J., Garcia, S., & Herrera, F. (2012). A
taxonomy and experimental study on prototype genera-
tion for nearest neighbor classification. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 42(1), 86–100.

van Hasselt, H. (2011). Insights in reinforcement learning: for-
mal analysis and empirical evaluation of temporal-difference
learning algorithms (Unpublished doctoral dissertation).
Universiteit Utrecht, The Netherlands.

van Otterlo, M. (2009). The logic of adaptive behavior: Knowl-
edge representation and algorithms for adaptive sequential
decision making under uncertainty in first-order and rela-
tional domains. IOS Press.

About the Authors

Enrique Munoz de Cote graduated in 2008 from Politecnico di Milano with a PhD in computer
science. He spent two years at the University of Southampton as a postdoc, researching in the
boundary between game theoretic interactions, machine learning and implicit negotiations. He
was an invited scholar at the RL3 lab at Rutgers university and has been awarded for his
research, including a UAI best student paper and two times winner of the Lemonade Stand
Game tournament organised by Yahoo! research. He has been responsible of 4 research projects
and has published over 50 papers in top-tier conferences and scientific journals. He is now asso-
ciate professor at INAOE (Mexico) where he leads the COLD intelligent systems lab, which
focus on intelligent systems, machine learning and human-computer interactions. He is also a
member of the board of directors of the Association for Trading Agent Research (ATAR) and a
member of the International Foundation for Autonomous Agents and Multiagent Systems.

Esteban O Garcı́a received his BSc degree in Computer Sciences from ‘‘Benemerita Universidad
Autonoma de Puebla’’ and his M.Sc. and Ph.D degrees from ‘‘Instituto Nacional de Astrofisica,
Optica y Electronica’’, in Puebla, Mexico. He is currently a collaborator in the project ‘‘High pre-
cision agriculture through collaborative UAVs’’ in the COLD group at INAOE and the CEO in
Vertical AP, an aerial robotics startup company in Mexico. His recent research focuses on trans-
fer learning and close range drone navigation in construction and mining sites.

Eduardo F Morales received his PhD degree from the Turing Institute - University of
Strathclyde, in Scotland. He has been responsible of more than 25 research projects and has
more than 150 peer-review papers. He was an Invited Researcher at the Electric Power Research
Institute (1986), a Technical Consultant (1989–1990) at the Turing Institute, a Researcher at the
‘‘Instituto de Investigaciones Electricas’’ (1986–1988 and 1992–1994) and at ITESM - Campus
Cuernavaca (1994–2005). He is currently a senior researcher at the ‘‘Instituto Nacional de
Astrofı́sica, Óptica y Electrónica’’ (INAOE) in Mexico where he conducts research in Machine
Learning and Robotics.

Munoz de Cote et al. 15

 at INAOE - Parent on September 19, 2016adb.sagepub.comDownloaded from

http://adb.sagepub.com/

