
Pattern Recognition Letters 73 (2016) 91–99 
Contents lists available at ScienceDirect 

Pattern Recognition Letters 
journal homepage: www.elsevier.com/locate/patrec 

A naïve Bayes baseline for early gesture recognition ! 
Hugo Jair Escalante ∗, Eduardo F. Morales , L. Enrique Sucar 
Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840, Mexico 
a r t i c l e i n f o 
Article history: 
Received 18 September 2015 
Available online 3 February 2016 
Keywords: 
Early recognition 
Gesture recognition 
Naïve Bayes 

a b s t r a c t 
Early gesture/action recognition is the task of determining the identity of a gesture/action with as few 
information as possible. Although the topic is relatively new, there are some methods that address this 
problem. However, existing methods rely on complex modeling procedures, that do not necessarily paid 
off the computational effort. Thus, simple yet effective and efficient techniques are required for this task. 
This paper describes a new methodology for early gesture recognition based on the well known naïve 
Bayes classifier. The method is extremely simple and very fast, yet it compares favorably with more elab- 
orated state of the art methodologies. The naïve baseline is based on three main observations: (1) the 
effectiveness of the naïve Bayes classifier in text mining problems; (2) the link between natural language 
processing and computer vision via the bag-of-words representation; and (3) the cumulative-evidence 
nature of the inference process of naïve Bayes. We evaluated the proposed method in several collections 
that included segmented and continuous video. Experimental results show that the proposed methodol- 
ogy compares favorably with state of the art methodologies that are more elaborated or were specifically 
designed for this purpose. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

Gesture and human action 1 recognition are two widely stud- 
ied topics in computer vision that can have a huge impact in the 
field of human-computer interaction. Significant progress has been 
reported in the last few years [1] , in large part because of the re- 
lease of the Kinect [37] . Most methods tackle the problem in an 
offline setting, meaning that gestures most be segmented prior to 
its classification [11,26,40,42] . On the other hand, gesture spotting 
techniques aim at recognizing gestures online [10,22,29] . In both 
recognition and spotting, current methods usually segment and 
recognize a gesture once it has been finished; that is, the whole 
segment of video has to be seen before a prediction can be made. 
Hence, traditional methods are not suitable for systems requiring a 
real interactive experience. 

Early gesture-recognition methods aim at identifying the cat- 
egory of a gesture before it has been finished [9,21,28,44] . This 
type of solutions can improve the interaction experience for users, 
because intelligent/anticipated decisions can be made (e.g., in re- 
sponse to the gesture that is about to finish). Besides, in certain 
scenarios these techniques could be used for prevention or alert 
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1 We describe our methods in terms of gesture recognition, although most de- 

scriptions apply to action recognition as well. We report results in both tasks. 

emission, which could result in fast response against undesired be- 
havior. Despite its potential impact, early gesture/action recogni- 
tion is a research topic that is in its infancy. A few methods have 
been proposed, however most of them are based on strong as- 
sumptions (e.g., gestures can be clearly distinguished at their be- 
ginning, or one can know the duration of the gesture) and complex 
(yet very effective) modeling procedures (e.g., structured-output 
prediction models). 

This paper describes a simple approach for early gesture 
recognition based on a well known classifier: naïve Bayes. In a 
nutshell, we apply the multinomial naïve Bayes model [25] to 
partial video sequences, where the video is represented under 
the bag of features representation. This proposal is grounded in 
the success that multinomial naïve Bayes has had in text mining 
[25,33] , and in the analogy of the bag of words – bag of features 
representation [39] . Because of the nature of the inference process 
of naïve Bayes, we can make predictions after seeing any amount 
of information (even zero 2 !). This is illustrated in Fig. 1 . We show 
that this naïve baseline can obtain superior performance to state of 
the art techniques and at the same time is more efficient. Because 
we are using a basic version of this classifier, our work can be 
extended in many ways. Hopefully, our research will pave the way 

2 Please note that it may not make sense to make predictions without seeing any 
evidence, nevertheless, we wanted to point out that with naïve Bayes it is possible 
to do this: we can use the prior probabilities (see Eq. (1)) for making predictions 
under total uncertainty. 

http://dx.doi.org/10.1016/j.patrec.2016.01.013 
0167-8655/© 2016 Elsevier B.V. All rights reserved. 
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Fig. 1. Overview of the proposed approach. From top to bottom: a video is analyzed sequentially (RGB video and skeleton data are shown in rows 1 and 2), each time 
building the bag of features representation for the partial sequence (third row, for clarity we show the bag of features representation for 50 randomly selected bins/features). 
At each time t , the naïve Bayes classifier makes predictions (fourth row). We show the negative-log probabilities for the different gestures (the correct class is marked with 
a red rectangle). Under this scheme we can make predictions at any time t , (in this example, we recognize the gesture after processing 60% of the video). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
for the development early-recognition methods based on more 
sophisticated generative models. 

The remainder of this paper is organized as follows. Next sec- 
tion reviews related work on gesture recognition with emphasis on 
early-recognition methods. Section 3 describes the proposed ap- 
proach to gesture recognition. Section 4 reports experiments and 
results on benchmark data sets and a comparison with state of the 
art techniques. Finally, Section 5 summarizes our findings and out- 
lines future work. 
2. Related work 

Early gesture recognition is a relatively new research topic. 
The first attempts were published less than a decade ago [28] , 
and it remains a somewhat unexplored topic. The first works 
on early recognition attempted to extend and apply standard 
methods (e.g., DTW) [36] . However, they were not specifically 
designed for early recognition, but just were evaluated for this 
setting. Truly extended methods have been proposed, see e.g., [32] , 

although their performance is limited (e.g., around 50% of accuracy 
in the same data set we consider, MSRDaily3D). More recently, 
methods that identify templates on the execution of gestures at 
their beginnings were proposed (i.e., learn to model the initial 
parts of gestures) [21,28,35] . Template-based methods have the 
disadvantage that they do not perform well if there are gestures 
with similar beginnings (e.g., come and go-away hand gestures). 

With the release of the Kinect [37] , effective methods that take 
advantage of body-joints information and depth video have been 
proposed. For instance, in [17] the max-margin early event detec- 
tor (MMED) method was proposed. MMED is based on structured- 
output SVMs with a training mechanism that shows sequences 
frame by frame to the model. MMED is able to make predictions 
for partial events, and it was proposed for early analysis of fa- 
cial expressions. This method was later extended to actions in [16] . 
More recently, in [18] , an improved formulation called SMMED for 
early event detection was proposed. Differently from the methods 
in [16,17] , the margin-maximization formulation from [18] discards 
gesture-classes as the sequence of video is being processed, with 
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the aim of making predictions as early as possible (i.e., once all 
but one class has been discarded). The main advantage of these 
margin-maximization techniques is that they are very competitive 
(in terms of both recognition and earliness-of-recognition perfor- 
mances), besides they are based on principled learning procedures 
and they are trained discriminatively and specifically for the early- 
recognition task. A problem with these methods is the complexity 
of the learning problem and the computational cost when training 
the models. More importantly, these models assume the input se- 
quences have a similar duration or can be aligned easily, see e.g. 
Fig. 2 in [18] . 

This paper introduces the use of naïve Bayes for early gesture 
recognition. We show that the standard naïve Bayes learning al- 
gorithm equipped with a partial-information inference-test proce- 
dure, is capable of obtaining early-recognition performance that 
compares favorably against recent state of the art methods. The 
naïve baseline is also based on principled learning procedures and 
is very efficient (inference complexity of O ( q ), with q the number 
of attributes). Besides, it is very simple and can be extended in a 
number of ways. 

To the best of our knowledge, naïve Bayes has not been used 
previously for early recognition. However, a wide variety of im- 
provements and extensions of naïve Bayes related to our pro- 
posal have been proposed (in parentheses we highlight differences 
with early recognition): (i) those for alleviating independence as- 
sumption of Naïve Bayes: i.e., modeling feature-dependencies for 
a subset of features [14,41,46] (but partial information cannot 
be processed); (ii) anytime formulations, i.e., for making predic- 
tions under time/resource constraints [19,43] (but the complete in- 
stance/object to be predicted is known in advance); (iii) incremen- 
tal learning algorithms [2,23] , (a sequence/stream of complete ob- 
jects is processed, i.e., do not deal with objects described with par- 
tial information); and (iv) techniques for dealing with incomplete 
information [15,34,45] , e.g., smoothing techniques, (attributes are 
not known sequentially, and can deal with a few missing values). 
The previous extensions aim at making naïve Bayes more robust 
against certain limitations, however, to the best of our knowledge, 
it has not been used for early classification before. This is some- 
what surprising given that, as shown in the next section, naïve 
Bayes classifiers can naturally deal with partial information. 
3. Early gesture/action recognition 

This section describes the way we use naïve Bayes classifier for 
early gesture recognition. First we outline the bag of features rep- 
resentation, next we present the standard naïve Bayes classifier, fi- 
nally, the early recognition procedures are discussed. 
3.1. Bag of features formulation 

The bag of features representation is one of most effective 
nowadays for several computer vision tasks, including gesture and 
action recognition [1,11,18,26,31,42] . This representation is the anal- 
ogous to the bag of words representation widely used in text 
mining [33] . In fact, this analogy has motivated pretty much re- 
search on the use of text mining methodologies within computer 
vision, for instance: visual ngrams [3,24] , visual phrases [47] , vi- 
sual weighting-schemes [12] , and visual topic modeling [8] . At the 
same time, the computer vision community has evolved in a num- 
ber of ways the bag of features representation, clear examples are 
VLAD [20] , temporal bag of features [38] , strings on aclets [4] , etc. 

The intuitive idea in the bag of features is to generate a code- 
book of features (playing the role of the vocabulary in text anal- 
ysis), and represent each video/image with an histogram that ac- 
counts for the frequency of occurrence of elements of the code- 
book in the video/image [39] . The visual codebook is generally 

built by clustering descriptors extracted from the objects of in- 
terest, the centers of the clusters are considered the visual words 
(codewords). In this work, we adopt the bag of features formula- 
tion for representing sequences of video (see Section 4 for a de- 
scription of the considered descriptors). 
3.2. Naïve Bayes classifier 

Consider a data set: D = ( x i , y i ) { 1 , ... ,N} with N pairs of attributes 
( x i ) and labels ( y i ) associated to a supervised classification prob- 
lem. Assuming that x i ∈ R q and y i ∈ C = { 1 , . . . , K} is a K -class clas- 
sification problem with numeric attributes. Under the Bayesian 
classifier, the probability of each class C i for an unseen instance 
x T = 〈 x T, 1 , . . . , x T,q 〉 is given by: 
P (C i | x T ) ≈ P (C i ) P ( x T | C i ) (1) 

The class of instance x T is given by y T = arg max i P (C i | x T ) . The 
assumption of naïve Bayes is that the probability of occurrence of 
attributes is independent given the class, that is: 
P (C i | x T ) ≈ P (C i ) q ∏ 

j=1 P (x T, j | C i ) (2) 
The maximum likelihood estimation for the prior of class C i is 

given by: 
ˆ P (C i ) = | X i | 

N (3) 
where X i is the set of all instances in D that are labeled with class 
C i . Hence the key of the naïve Bayes classifier lies in the estimation 
of P ( x T | C i ) , or more precisely of P ( x T , j | C i ). Depending on the type 
of data (e.g., binary, discrete, or real) a different probability dis- 
tribution may be assumed for computing P ( x T , j | C i ) (e.g., Bernoulli, 
Multinomial, or Gaussian, respectively). 

In text classification one of the most effective estimates is based 
on the multinomial distribution [25] : i.e., each visual word is seen 
as an independent multinomial trial with r possible outcomes. Be- 
cause we are using a bag of features representation (i.e., samples 
are represented by histograms) it makes sense to use the multi- 
nomial naïve Bayes classifier: the frequency of occurrence of each 
visual word is the number of outcomes of the multinomial trial. 
Thus, assuming a multinomial distribution for the model we have 
that the maximum likelihood estimation for the term of interest 
is: 
P ( x T | C i ) ≈ q ∏ 

j=1 ˆ P (x T, j | C i ) f j,T (4) 
where f j , T is the value of the jth attribute in instance x T (under 
the bag of features, it can be interpreted as the frequency of oc- 
currence of the jth codeword in video T ), and 
ˆ P (x T, j | C i ) = 1 + F j,C i 

q + ∑ q 
k F k,C i (5) 

where F l,C i is the sum of values of the lth attribute in objects of 
class C i . The derivation from Eqs. (4) and (5) is straightforward as- 
suming by assuming a multinomial distribution for the bag of fea- 
tures of a video. Please note that factorial terms that do not affect 
the final decision are removed. For our implementations we take 
logarithms to prevent the underflow problem. For more details we 
refer the reader to [25] . 
3.3. Early naïve Bayes 

In early gesture recognition we assume that during training we 
have full videos/sequences, therefore, the same training procedure 
as the standard naïve Bayes classifier is performed for estimating 



94 H.J. Escalante et al. / Pattern Recognition Letters 73 (2016) 91–99 
the necessary probabilities. The difference comes at inference time: 
when classifying a new sequence we process it in sequential or- 
der starting from the beginning. W.l.o.g. 3 , at time t we assume we 
have read the first t -codewords 4 in the video (i.e., one codeword is 
read at each time). Let v T denote the video sequence we want to 
classify, where it contains M v T words, then, v T = w 1 , w 2 , . . . , w M v T . 
Please note that we are implicitly assuming that we know the 
start of a gesture, although this is a somewhat strong assumption, 
there are methods that allow us to identify the starting point of 
gestures, see our experiments and results on gesture spotting in 
Section 4 . 

We notice from Eqs. (3) –(5) that in fact we can predict the class 
of sequence v T regardless of the amount of information we have 
read from it: at time t we know that v T = w 1 , . . . , w t , therefore, 
we can generate a bag of features x T representation for v T as fol- 
lows x T = 〈 x T, 1 , . . . , x T,q 〉 , where x T , j indicates the frequency of oc- 
currence of the jth codeword in video sequence v T . One should 
note that regardless of the number of codewords seen, the repre- 
sentation for x T has length q : it is just the bag of features obtained 
with the codewords seen so far. Thus, terms not occurring in v T 
or not seen so far at time t are assigned values of x T, j = 0 . With 
this representation we can use Eq. (1) directly to classify the se- 
quence. Actually, we can attempt to classify sequence v T without 
having read any information at all! (i.e., with t = 0 ). Of course, the 
a posteriori probability will be dominated by the priors, see Eq. (3) . 
Simply as this, we can use naïve Bayes to perform early classifica- 
tion. 

We now briefly analyze what are the main components that 
come into play when making early prediction. At time t one can 
rewrite Eq. (4) as: 
P (C i | x T ) ≈ P (C i ) ∏ 

j : j ∈ v T P ( x T, j | C i ) ∏ 
k : k &∈ v T P ( x T,k | C i ) (6) 

the second product accounts for the codewords that we have seen 
so far from the video (probabilities are affected by the frequency 
of occurrence of such terms in v T so far); the third product ac- 
counts for terms not seen so far, this term resolves to 1, because 
the use of the frequency of the codeword in the video as power in 
Eq. (4) . Clearly, for small values of t , the priors will dominate the 
decision, as t increases the content of the document will dominate 
the whole product. Therefore, the way these three components are 
estimated can be crucial for improving the performance of naïve 
Bayes in early classification. 

Despite the simplicity of this early gesture recognition ap- 
proach, we will see in the next section that it compares favorably 
with more complex solutions from the state of the art. We show its 
validity in three benchmark data sets. The main goal of this paper 
is to show that naïve Bayes can be used for early gesture recogni- 
tion and that its performance is competitive with the best existing 
solutions to this problem. We foresee our work will pave the way 
for development of a new type of models for this problem. 
4. Experiments and results 

This section evaluates the performance of the naïve Bayes 
model in data sets that have been previously used for gesture and 
action recognition. First we describe the considered data sets, next 

3 One should note that we can take steps of any length, instead of processing 
codeword-by-codeword. 

4 Usually, a codeword is associated to every frame of the video sequence, thus the 
t -codeword is associated to the t th -frame. Nevertheless, there are cases in which 
this does not hold, e.g., when using STIP-like descriptors. 

Table 1 
Data sets considered for experimentation. The number of training/test ges- 
tures, categories (K) and features (Feats.) is given. Cont. column indicates 
whether the data set contains continuous video. The +1 means the no- 
gesture/idle category. 

Data set Train Test K Feats. Cont. 
MSRDaily3D [40] 192 48 16 600 No 
MAD [18] 2,265 578 35 + 1 300 Yes 
Montalbano [10] 10,304 3,579 20 + 1 2,0 0 0 Yes 

we report experiments on early gesture recognition and finally we 
present results on gesture spotting. 
4.1. Data sets 

Because our interest is in interactive systems, the considered 
data sets are associated to tasks in which the user is near the sen- 
sor. Data sets for both, gesture recognition and human action anal- 
ysis, task were used. The main characteristics of considered data 
sets are shown in Table 1 , below we provide a detailed description. 
The three data sets were captured with the Kinect [37] . Two data 
sets have been used for spotting and one for recognition. In each 
data set, training videos are represented with their bag of features 
(using the whole information in the video), with this representa- 
tion the naïve Bayes classifier is trained. Likewise, test sequences 
are represented by its bag of features, however, this time we gen- 
erate bag of features representations that capture partial informa- 
tion from the sequence: at each time t the representation includes 
information from the features observed up to time t , see Section 3 . 
Then we make predictions with the trained classifier for different 
times t . As explained below, for each data set we use visual de- 
scriptors that were used in previous work in order to compare our 
results, in every data set, we replicate the corresponding evalua- 
tion protocol. 
4.1.1. MSRDaily3D 

The MSRDaily3D data set comprises 16 actions associated to 
daily activities, where there are objects in the background and 
most actions involve human-object interaction. For comparison 
with previous work on early gesture recognition we consider 12 
out of the 16 actions, as in [16–18] . Video sequences were repre- 
sented with a bag of depth cuboid similarity features (DCSF), the 
same parameters for the descriptor as in [16,18,42] were used. A 
vocabulary of q = 600 words was obtained by applying k − means 
to descriptors extracted from training sequences (50 visual words 
for each category, a preliminary study on the sensitivity to the 
value of q show that, although it is suboptimal, it represents a good 
tradeoff between performance and high dimensionality). Five-fold 
cross validation (over subjects) was used for evaluation. 
4.1.2. MAD 

The Multimodal Action Data set (MAD) was introduced in [18] , 
it contains 35 different actions (plus the idle/no-action category). 
The data set was proposed to evaluate gesture spotting, therefore 
it is composed of sequences of continuous video containing ges- 
tures and no-gestures (idle). A total of 40 sequences of continuous 
video were recorded by 20 subjects. Each frame was represented 
by vectors of features extracted from the skeleton, the descriptor 
includes: bone angles between joints, differences between joints 
(the current and previous one and the current and 10 th previous 
frame). Frame descriptors were clustered with k -means ( q = 300 ), 
each video is represented by its bag of features. The choice of de- 
scriptor and its parameters were taken from previous work, in such 
a way that we used exactly the same descriptors and evaluation 
protocol as in [18] . 
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Fig. 2. Comparing the early recognition performance of our method (ENB) against support vector machines (SVM) for the three data sets. The left column reports accuracy 
and the right column f 1 measure. 
4.1.3. Montalbano 

The last data set we considered is Montalbano [10] . This data 
set has been used in two challenges on gesture recognition and 
spotting [10,11] . To the best of our knowledge, this is the largest 
data set for gesture recognition available nowadays. The task con- 
sist of recognizing gestures from 20 categories (Italian cultural 
gestures). The available data is depth and RGB video together 
with skeleton information. For our experiments we used the fea- 
tures proposed in [29] , which combine depth, RGB video and 
skeleton information by means of convolutional nets and other 
deep learning mechanisms (For efficiency, we used a single chan- 
nel out of the 4 that are used in [29,30] ). Once each frame of 

each video is described with such features we learn a vocabu- 
lary of q = 20 0 0 codewords. The choice for the value of q is jus- 
tified by a previous study using this bag of features representation 
[12] . 
4.2. Recognition performance 

First we evaluate the early recognition performance of early 
naïve Bayes (hereafter ENB) on segmented gestures for the three 
data sets. ENB was trained on the complete sequences and tested 
on sequences of increasing size: containing information from 1% 
to 100% of the sequences (step sizes of 1% were used). We report 
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Table 2 
Early recognition results in the MSRDaily3D data set. 

Segs./ Method (%) [16] (%) [18] (%) [42] (%) Ours (%) 
[0 –20] 50.4 56.2 
[0 –40] 63.8 72.9 
[0 –60] 65.8 73.2 75.0 
[0 –80] 68.8 79.2 
[0 –100] 68.3 83.6 ∗ 79.2 

the recognition performance in terms of f 1 measure (leftmost col- 
umn) and accuracy (rightmost column) for all of the data sets and 
different sizes in Fig. 2 . For reference, we show the performance 
of a linear SVM trained and tested in the same conditions as ENB 
(below we provide a comparison with other state of the art tech- 
niques). 

It can be seen from these plots that ENB outperforms SVM in 
most configurations. For MSRDaily3D (top plots), the improvement 
is consistent across different percentages of information and under 
both f 1 measure (left) and accuracy (right). For the MAD data set 
(mid plots), the improvement in f 1 measure of ENB over SVM is 
maintained up to near the end of gestures, whereas for accuracy, 
SVM outperforms ENB after 65% information has been read. This 
result, suggest SVM is making accurate predictions for majority- 
class gestures when enough information is given. However, this 

behavior is not necessarily desired when having a wide variety of 
actions (in this case there are 35 different actions). On the other 
hand, it is interesting that for the MAD data set ENB has an erratic 
behavior in terms of f 1 measure when less than 20% of information 
has been received (mid, leftmost plot). This behavior can be due 
to the fact that with very few information ENB relies to much on 
the priors (this explains the normal behavior in accuracy), which 
may affect its performance. Regarding Montalbano data set, ENB 
outperforms SVM in every setting, it is interesting to see that ENB 
has a high “jump-start”: with 20% of the information we can clas- 
sify about 85% of all of the gestures. This result can be due to the 
effectiveness of the features that were learned for this particular 
data set [29] . 

In general we can say that ENB outperforms SVM (most notably 
in terms of f 1 ). Also, it can be said that overall with about 60% of 
the information of gestures, we can make predictions with accept- 
able performance. Regarding efficiency, recognition for all of the 
considered data sets can be performed loosely in real time as the 
inference process of ENB is quite fast. In the following we report a 
per-data set analysis of results and comparisons with related work. 
4.3. Results on MSRDaily3D 

Early recognition results for the MSRDaily3D data set are shown 
in Table 2 . For these results, we classified actions with the same in- 
terval predictions reported in previous work [16,18] , see column 1. 

Fig. 3. ENB performance in a randomly selected test-sequence. x -axis denotes time (No. of processed frames), the y -axis denotes the label of the gesture (in MAD each se- 
quence contains the 35 gestures performed in order); the idle/no-gesture category is indicated with y = −1 . Ground-truth is shown with the red-dashed line, the predictions 
of ENB are shown in blue-solid line. In a perfect prediction, the solid line should cover the dashed one. Right: early gesture spotting (no attempt is made to detect the end 
of a gesture). Left: early gesture spotting and segmentation (the end of the gesture is detected). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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One should note that for this experiment, the methods in [16,18] 
require that gestures are segmented in intervals, whereas ours 
does not: we have made predictions at such intervals for compar- 
ison, but ENB can make predictions at any time. We also include 
the result from [42] , however, please note that such results were 
obtained using the 100% of information (i.e., no early prediction). 

It can be seen from Table 2 that the best results were obtained 
with the proposed naïve baseline. ENB outperforms [16] with ev- 
ery amount of considered information. Besides, it obtained com- 
parable performance to the SMMED method in [18] when reading 
only about 40% of the sequences (after reading 60% our method 
consistently outperforms SMMED). One should note that ENB clas- 
sifies every gesture using the percentage of information indicated 
in column 1 of Table 2 , whereas SMMED only was capable of early- 
classifying around 39% of the gestures/samples (for the rest the 
whole sequence of video was used). It is important to emphasize 
that we have used exactly the same data partitions, descriptor and 
settings as in previous work, thus our results are directly compa- 
rable to [16,18] . 

Finally, it is worth emphasizing that our results are very close 
to the best recognition (i.e., no early-classification) result reported 
for this data set when using the same descriptor (column 4) [42] . 
Therefore, naïve Bayes not only is appropriate for early recognition, 
but also for the standard gesture recognition task. 
4.4. Results on MAD 

In Fig. 2 we already reported recognition results on isolated 
sequences, in this section we evaluate the performance of ENB 
in continuous video. For gesture spotting we extended the ENB 
method as follows. First, we train a two-class naïve Bayes model 
for distinguishing gestures from no-gestures, where the complete 
sequences were used for training this classifier. At testing time, we 
process the sequence of continuous video with a sliding window of 
size ρ , we used ρ equal to half the average length of training ges- 
tures. Intuitively, we wanted to recognize a gesture by using 50% 
of information. Every window is classified with both the binary 
and multiclass ENB classifiers. Let p g and p n denote the probabili- 
ties of a window containing or not a gesture, respectively. When- 
ever (p g − p n ) exceeds a threshold we record the prediction of the 
multiclass classifier for that window. Whenever (p n − p g ) exceeds 
another threshold, we combine the predictions of all of the win- 
dows up to the previous one (i.e., we detected the end of a ges- 

Table 3 
Early recognition spotting results in the MAD data set. 

Segs./ Method [16] (%) [18] (%) Ours (%) 
Precision 28.7 59.2 76.1 
Recall 51.4 57.4 73.6 
f 1 measure 36.8 58.2 74.8 

ture). Both thresholds are learned from training videos. In this way 
we are able to perform early recognition and spotting. 

To better appreciate the early recognition performance in spot- 
ting, it is worth evaluating the performance of the early recogni- 
tion mechanism alone (i.e., without attempting to detect the end 
of gestures). Fig. 3 shows a comparison of the recognition mecha- 
nisms with and without trying to detect the end of the gesture. It 
can be seen from the top plot, that ENB correctly recognizes most 
of the gestures in the sequence, by using around 50% of the in- 
formation. Although part of the sequence cannot be correctly de- 
tected, it mostly corresponds to the second part of gestures, which 
is expected because we do not attempt to segment gestures. 

On the other hand, if we attempt to detect the end of gestures 
(see bottom plot in Fig. 3 ), it is clear that the performance of ENB 
is very close to the ground truth. This figures show evidence of 
the usefulness of ENB for early spotting, in the following we com- 
pare the performance of ENB with reference methods in the task 
of gesture spotting. 

Table 3 shows a quantitative evaluation and comparison of ENB. 
For this evaluation we report the average precision and recall, as 
reported in [18] : a gesture is considered correctly detected if it 
overlaps with at least 50% of the ground truth gesture. A false posi- 
tive is counted whenever the number of incorrect predicted frames 
overpass 50% of the average length of training gestures. The ref- 
erence methods, MMED and SMMED were extended to deal with 
continuous video and perform spotting as described in [16,18] . It 
is clear from Table 3 that our method outperforms MMED [16] 
and SMMED [18] approaches. The difference in performance is con- 
siderable. The absolute improvement in terms of f 1 measure is of 
more than 15%. This is a very interesting result: the naïve baseline, 
outperforms max-margin based models. 

A final qualitative comparison is shown in Fig. 4 . We repro- 
duced the plots from Figure 6 in [18] , and generated similar 
plots from predictions obtained with our method. The color codes 
the actual label of each gesture, GT depicts the ground truth. It 
can be seen from these plots that our method indeed performs 

Fig. 4. Qualitative comparison of ENB with the methods reported in [18] . We reproduce here the figures from [18] . 
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Table 4 
Recognition-spotting results in the Montalbano data set. Undis- 
closed: no paper published about this method, see [10] . 

Method Overlap (%) 
[30] 85.0 
[27] 83.4 
[7] 82.7 
[13] 74.5 
[6] 74.7 
Undisclosed 68.9 
Ours 77.0 

very close to the ground truth. Although it misses a few ges- 
tures, in most cases the correct gesture is detected and there 
are not incorrectly classified frames within a detected gesture. In 
our opinion, ENB provides better predictions than the reference 
techniques. 
4.5. Montalbano data set 

Recognition results on isolated gestures for this data set were 
reported previously, in this section we analyze spotting perfor- 
mance. A similar spotting mechanism as that used for the MAD 
data set has been adopted (i.e., gesture vs. no-gesture classifier, 
combined with a multiclass ENB). Results of this experiment are 
shown in Table 4 . For this data set the (frame-level) overlap mea- 
sure has been mostly used (see, e.g., [10] ), accordingly we evaluate 
our method with such measure. 

From Table 4 it can be seen that the ENB approach is compet- 
itive with state of the art methods in the Montalbano data set. 
An overlap of ≈ 77% is acceptable for a number of applications, 
the difference between the top method and ours is of around 8%, 
but ENB can provide anticipated predictions. It is worth mention- 
ing that because Montalbano data set was released in the con- 
text of two academic challenges, many methods have been using 
it, we report in this paper only the best performing methods. See 
[10,11,30] for further details. Also, it is important to emphasize that 
our method performs online gesture recognition, that is, it could 
be used directly in a real gesture recognition application (e.g., hu- 
man robot interaction). However, most of the reference methods 
perform spotting in an offline setting: they analyze the whole se- 
quence of video to segment the video [10] . 
5. Conclusions 

We introduced a new baseline for early gesture recognition. 
The proposed method takes advantage of naïve Bayes cumulative- 
evidence property and adapts it to gesture recognition and spot- 
ting. A comparison with state of the art methods in standard 
data sets shows that Early naïve Bayes compares favorably with a 
number of more complex methodologies that have been specif- 
ically designed for early gesture recognition. It is important 
to emphasize that we have obtained these outstanding results 
with a kind-of straight implementation of naïve Bayes. There- 
fore, even better results are expected when incorporating improve- 
ments/extensions/adaptations of this simple classifier. Future work 
includes: improving the early-predictive capabilities of naïve Bayes 
in several ways. Specifically: one can define adaptive priors that 
change as the value of t increases; we can implement the same 
idea with methods that take into account term-dependencies (see 
e.g., [41,46] ) in order to increase the predictive power of the clas- 
sifier; also one can adopt advanced/alternative smoothing tech- 
niques to account for partial and missing information properly 
[5,34] . 
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