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a b s t r a c t

Hierarchical classification can be seen as a multidimensional classification problem where the objective is
to predict a class, or set of classes, according to a taxonomy. There have been different proposals for hier-
archical classification, including local and global approaches. Local approaches can suffer from the incon-
sistency problem, that is, if a local classifier has a wrong prediction, the error propagates down the
hierarchy. Global approaches tend to produce more complex models. In this paper, we propose an alter-
native approach inspired in multidimensional classification. It starts by building a multi-class classifier
per each parent node in the hierarchy. In the classification phase, all the local classifiers are applied simul-
taneously to each instance, providing a probability for each class in the taxonomy. Then the probability of
the subset of classes, for each path in the hierarchy, is obtained by combining the local classifiers results.
The path with highest probability is returned as the result for all the levels in the hierarchy. As an exten-
sion of the proposal method, we also developed a new technique, based on information gain, to classifies
at different levels in the hierarchy. The proposed method was tested on different hierarchical classifica-
tion data sets and was compared against state-of-the-art methods, resulting in superior predictive per-
formance and/or efficiency to the other approaches in all the datasets.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A traditional classification process consists of assigning a class c,
from a finite set C of classes, to a single instance x, represented by a
feature vector. A dataset D, for this kind of classification, is com-
posed of n examples: ðx1; c1Þ; . . . ; ðxn; cnÞ. In contrast, the multidi-
mensional classification process, assigns a subset of classes J # C
to a single instance x. A dataset D for a multidimensional problem
is composed of n examples: ðx1; j1Þ; . . . ; ðxn; jnÞ, where ji is a class
vector.

Hierarchical classification is a variant of the multidimensional
task with the classes arranged in a hierarchy. This hierarchy can
be either a tree or a Directed Acyclic Graph (DAG), where each
node corresponds to a class. There are many fields where hierarchi-
cal classification has gain popularity, like musical genre classifica-
tion (Silla & Freitas, 2009), web content (Dumais & Chen, 2000),
bio-informatics (Valentini, 2009), and computer vision
(Barutcuoglu & DeCoro, 2006); among others.

Different alternatives have been proposed for hierarchical clas-
sification, including local (top–down) and global (big-bang)
approaches (Silla & Freitas, 2011). Local approaches consist of a
series of local classifiers, which are usually applied in a top–down

fashion; they suffer the inconsistency problem; that is, if a local
classifier miss-classifies the error propagates down the hierarchy.
The global approach results in a more complex model which in
general has not better predictive results than the local approaches.

In this work, we propose an alternative approach inspired on
non-hierarchical multidimensional classification techniques.1 In
the training phase, a multi-class classifier per parent node in the
hierarchy is built. In the classification phase, in contrast with tradi-
tional top–down approaches, all the local classifiers are applied
simultaneously to each instance, so for each local classifier a probabil-
ity for each class is obtained. Then, a set of consistent classes, accord-
ing to the hierarchy, is obtained. For this, the probability of the
subset of classes c1; c2; . . . ; cl of each path q in the hierarchy is esti-
mated. The path q# with highest probability provides the resulting
classes for all levels in the hierarchy.

In addition, we developed an extension of the hierarchical mul-
tidimensional classifier based on an information gain measure
with the objective to make a prediction at any level in the hierar-
chy; in other words, a non-mandatory leaf-node prediction. This
extension considers backtracking from the bottom classifier in
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the hierarchy when there is not enough confidence in their results,
returning a partial class subset.

We evaluated the proposed method with hierarchical classifica-
tion data sets in different domains: text, images and genes; consid-
ering two different base classifiers: Naive Bayes and Random
Forest. We compared the results in terms of standard and hierar-
chical precision measures against a top–down approach using
the same base classifiers, and also a top–down method that does
classifier selection for each node and is one of the current top per-
forming techniques in the literature (Secker et al., 2007, 2010). For
all the data sets our method has superior or similar performance
than the other approaches, and it is also much more efficient than
the top–down classifier selection method.

2. Hierarchical classification

According to Freitas and de Carvalho (2007, chap. VII) and Sun
and Lim (2001), hierarchical classification methods differ in three
principal criteria. The first criterion is the type of hierarchical
structure used; this one can be a tree or a DAG. The second crite-
rion is related to how deep the classification in the hierarchy is per-
formed, one way is to always classify a leaf node, also known as
mandatory leaf-node prediction, another one is to consider stopping
the classification process at any node in the hierarchy, also known
as non-mandatory leaf-node prediction. The final criterion is related
on how the hierarchical structure is explored: Local (also known as
top–down), Global (also known as Big-Bang), or Flat, see Fig. 1.

The most popular form to explore the hierarchical structure, in
binary or multi-class problems, is the local or top–down approach.
The training phase can be performed in three different ways: (1)
using binary classifier per node, except the root node, (2) using
multi-class classifier per parent node and (3) using multi-class
classifier per level. In the classification phase the first classifier
decides where the example belongs and passes the example to
the classifier of the immediate level, this procedure is repeated
until the example reaches a leaf node.

Typically, every node in the hierarchy uses the same classifica-
tion algorithm. An important limitation of this type of methods is
the inconsistency problem: A classification error, at any level of
the hierarchy, will be propagated to all its descendants.

The use of binary classifiers are the most common way to face a
hierarchical classification problem (Esuli, Fagni, & Sebastiani, 2008;
Barutcuoglu & DeCoro, 2006; Bennett & Nguyen, 2009; Otero,
Freitas, & Johnson, 2009; Valentini, 2009), but the multi-class clas-
sifiers are more adaptable to problems with big taxonomies.

Some binary approaches take into account the prediction of all
classifiers in order to avoid the inconsistency problem, however,
their taxonomies have a few number of levels. For example, In
Weigend, Wiener, and Pedersen (1999) and Dekel, Keshet, and
Singer (2005) the predicted probability in each node is multiplied
according with the different paths. In Dumais and Chen (2000)
the authors propose two methods,based on a threshold which need
to be adjusted for every taxonomy, that consider the output of all
binary classifiers in the hierarchy. In others approaches is used a
pruning strategy (Valentini, 2009; Xue, Xing, Yang, & Yu, 2008),
where the basic idea is that by evaluating all the classifier outputs
it is possible to make consistent predictions by computing a con-
sensus probability. Again, the use of a threshold is fundamental
for the mentioned work. In Bi and Kwok (2012) they formulate
the hierarchical classification problem as an optimization problem
which is solved with a greedy optimization algorithm, called CSSA.

The problem with binary approaches is that used too many clas-
sifiers. For taxonomies with an important number of nodes the
whole classification process will take a lot of time. Furthermore,
if the taxonomy grows the probability to occur an inconsistency
problem will grow. In our work we focused in the use of multi-
class classifiers to avoid this drawbacks.

An alternative to binary approach is the multi-class classifier
per parent node (Dumais & Chen, 2000; Holden & Freitas, 2008;
Secker et al., 2007;Silla & Freitas, 2009). The use of multi-class clas-
sifiers has the advantage of use a fewer number of classifiers than
the binary alternative. The multi-class classifiers are more adapt-
able to problems with big taxonomies compare to binary classifi-
ers. The basic approach used the same classifier algorithm per
each parent node. In Secker et al. (2007) the authors proposed an
alternative strategy based on the premise that each local classifier
should be adapted to the particular problem it solves. They devel-
oped the classifier selection technique in which a different classifier
is selected at each node in the hierarchy from a set of possible
models, based on the performance in a validation set. From this
work several extensions have been developed (Holden & Freitas,
2008; Secker et al., 2010; Silla & Freitas, 2009). In general, these
methods improve the performance of local approaches that use
the same base classifier for all the hierarchy; however there is also
a significant increase in the training time.

The main drawback with this approaches is that they treat each
classifier as independent; the result of each classifier has no rela-
tion with the result of the other classifiers.

In our work we follow a multidimensional approach applied to
the hierarchical classification problem. We take into account the
prediction of all the classifiers using multi-class classifiers per par-
ent node. We are interested in finding the best classification path,
and we use a much simpler approach than the selection of classi-
fiers that involves the product of the probabilities in each path.
We also include a non-mandatory leaf prediction criterion based
on information gain.

3. A multidimensional hierarchical classifier

In this section we describe the multidimensional hierarchical
classifier (MHC). First we present the basic algorithm that predicts
at all levels of the taxonomy, and then the extension for non-
mandatory leaf node prediction.

We initially considered a tree-structured taxonomy, T, with jtj
nodes, each node represents a class. There are jcj non-leaf nodes
and jlj leaf nodes, such that j t j¼j c j þ j l j. Each non-leaf node ci

has nsi sons, which represent the direct subclasses of class ci. We
define a path q in the taxonomy graph as any set of nodes from
the root to a leaf (following a trajectory), and assume that there
are j q j paths in the taxonomy. We also assume that there are m

Fig. 1. Types of hierarchical classifiers. (i) Local classifier: a multi-label classifica-
tion algorithm is used per parent node. The circles represent the classes and the
solid squares represent multi-label classifiers. (ii) Global classifier: a classification
algorithm (dashed square) that learns a global classification model that takes into
account the whole hierarchy. (iii) Flat classifier: a flat multi-label classification
algorithm (dash-dot square) which only predicts the leaf nodes.
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attributes for each class, such that the same set of attributes are
considered for all the classes (see Fig. 2).

The algorithm includes two phases: training and classification.
Training: Given a data base composed of n data points:

ðx1; j1Þ; . . . ; ðxn; jnÞ where xi are the m attributes and ji the class
according to a taxonomy T:

1. Partition the data base according to the subclasses (sons) of
each non-leaf node ci.

2. Learn a multi-class classifier for each non-leaf node ci to classify
its nsi sons.

To train each local multi-class classifier, we consider the prede-
fined taxonomy of each database. That is, all instances in the data
set that correspond to the sons (subclasses) of the node ci are con-
sidered, including their descendants; to train a classifier with nsi

classes.
Classification: Given an instance x:

1. Classify x with all the j c j local classifiers.
2. Combine the results of all the classifiers to obtain the probabil-

ities for all the paths, Pðq1Þ; Pðq2Þ; . . . ; PðqjqjÞ,
3. Return the path q# with highest probability.

The probability of each path is obtained by multiplying the
probabilities given by the local classifiers in the path, as exempli-
fied in Fig. 3. Next we provide a theoretical justification for this
procedure.

The probability of the subset of classes c1; c2; . . . cl (where 1 is
the root and l a leaf) of a path h given the vector of attributes x
is by the Chain rule:

Pðcl;cl&1; . . .c1 jxÞ¼ Pðcl j cl&1; . . . ;c1;xÞPðcl&1 j cl&2; . . . ;c1;xÞ..
.
Pðc1 jxÞ

ð1Þ

Given that each path is defined over a taxonomy:

cl ' cl&1 ' ( ( ( ' c2 ' c1 ð2Þ

Each subclass, ck, is independent of its ancestors (super-classes)
given its direct parent in the taxonomy; thus, we can simplify Eq.
(1) to:

Pðcl; cl&1; . . . c1 j xÞ ¼ Pðcl j cl&1;xÞPðcl&1 j cl&2;xÞ..
.
Pðc1 j xÞ ð3Þ

We make a further simplification by assuming that knowing the
parent class does not have a significant impact on the probability
of a class given its attributes, so we can rewrite Eq. (3) as:2

Pðcl; cl&1; . . . c1 j xÞ ¼ Pðcl j xÞPðcl&1 j xÞ . . . Pðc1 j xÞ ð4Þ

So we can obtain the joint probability of the subset of classes of
each path in the taxonomy with the product of the local classifiers
for each node in the path (note that the probability of the root is
not considered as this is one for a tree-structured taxonomy).

3.1. Non-mandatory leaf prediction based on information gain

The previous algorithm assumes that we have enough informa-
tion to predict the class of an instance at all the levels in the taxon-
omy. We present an extension to predict a class up to certain level
in the hierarchy when there is not enough confidence in the results
at the leaf nodes. Our method decides the best level to stop the
classification based on information gain.

The information gain is applied to each local classifier in the
selected path (global prediction) in a bottom-up fashion. The infor-
mation gain is defined as:

IGðciÞ ¼ EðciÞ &
Xns

j¼1

wchjðciÞ # EðchjðciÞÞ ð5Þ

where E represents the entropy, chjðciÞ is the child j of node i, and w
is the weight of each child class of the node i, which corresponds to
the proportional number of examples that belongs to each child.

If the information gain is less than zero for the bottom classifier,
the decision is set as unknown for this classifier, and the next clas-
sifier, one level up, is analyzed. Otherwise, if the information gain
is greater than zero, the prediction of the local classifier is accepted
and the analysis ends. If the top level classifier is reached the pro-
cess also ends. The subset of predicted classes (that could be from 1
to q, where q is the number of local classifiers in the path) is
returned as the global prediction.

3.2. Extension to DAG taxonomies

In a DAG taxonomy there could be more than one path for a leaf
node, for example in an image taxonomy a turkey could be a sub-
class of animal and food. The MHC was developed initially for
tree-structured taxonomies; next we extend the basic algorithm
for DAG structures.

The extension for DAGs implies modifying the training and clas-
sification stages. In the training stage we have to consider that a
class, ci, could have multiple parents, pc1

i ; . . . ; pcm
i . Thus, when the

multi-class classifier for each parent node is built, each one will
contain ci among its sons. We maintain ci in all the m local
classifiers.

In the classification stage, each local classifier will provide a dif-
ferent probability estimate, PðciÞ1; . . . ; PðciÞm, for a multi-parent
node ci. Thus, a multi-parent node will have associated several
probabilities, one per parent, which will be used to obtain the com-
bined probabilities of each path that passes through that node. To
obtain the probabilities of each path, we consider all possible paths
between the root(s) and the leaf nodes. In the case of a multi-
parent node there will be several paths that pass through that
node, so the corresponding local probability will be used for calcu-
lating the path probability. For instance, if node ci has two parents,
pc1

i and pc2
i , the probability of the path that comes from parent 1

will include the local probability PðciÞ1, and the path that comes
from parent 2; PðciÞ2 (see Fig. 4).

Finally, the paths with highest probability, along with all the
alternative connecting paths up the hierarchy, are returned as
the set of classes for that instance.

Fig. 2. Example of a tree-structured taxonomy. qi represent the different paths in
the hierarchy, ci represent the non-leaf nodes and li represent the leaf nodes in the
hierarchy.

2 We performed preliminary experiments in which we incorporated the probability
of the parent class as an additional attribute – in the spirit of chain classifiers (Read
et al., 2009) –, but there was no significant difference in performance.
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In the case of non-mandatory leaf prediction, the returned path
is followed in inverse order, from leaf to root in the graph. If a node
with multiple parents is found in the trajectory, the original path
(with the highest probability) is followed towards the root, not
considering alternative paths.

Although in the case of DAG taxonomies, the classifier could
return a set of classes that includes several sub paths in the hierar-
chy, in this work we do not consider the case of multi-label hierar-
chical classification; that is, when an instance can be assigned to
several paths in the hierarchy at the same time (this is left as future
work).

4. Experiments and results

We evaluated MHC with four hierarchical databases and com-
pared its performance against state of the art top–down classifiers.

First we describe the data sets, then present the experiments
and results, to conclude with an analysis.

4.1. Datasets

We consider four hierarchical datasets from different domains:
Reuters-21578, FunCat (Ruepp et al., 2004), IAPR-TC12 (Escalante
et al., 2010), and MIREX 2005 (Mckay & Fujinaga, 2005).

Reuters-215783 is a popular database for text retrieval (Yang,
1999). It has 135 categories and a taxonomy proposed in
Toutanova, Chen, Popat, and Hofmann (2001). FunCat4 is a database
in the domain of bio-informatics, in particular for protein function
prediction (Ruepp et al., 2004). It includes 27 categories and for this
work we only consider the category Cellcycle. IAPR-TC125 (Escalante
et al., 2010) is a collection of segmented and annotated images with
20,000 images and 99,000 annotated regions. Annotations are based
on an object taxonomy divided in six main categories.

For this work we consider the category Landscape-Nature. MIREX
2005 (Mckay & Fujinaga, 2005) is a database for musical genre
classification. In our evaluation, we used the Bodhidharma
(Mckay & Fujinaga, 2004) features with a 38-leaf class hierarchy
and 950-item symbolic genre dataset. The main properties of the
four datasets are summarized in Table 1.

4.2. Algorithms

We compared the proposed MHC against local hierarchical clas-
sifiers with a multi-class classifier per parent node, in which the
classification is performed in a top–down fashion. Three variants
of this scheme were considered. Two use the same local classifier
for each parent node, one uses as base classifier Naive Bayes and
the other Random Forest. The third scheme uses the classifier selec-
tion method proposed by Secker et al. (2007). For each local classi-
fier it select the best technique for the following set: Naive Bayes,
Bayes Net, SVM, AdaBoost, 3-KNN, PART, J48 and Random Forest
from Weka. This method has shown superior performance than
the top–down approach using the same classifier for each node
in the hierarchy.

We only compared the proposed approach against top–down
classification techniques, as these suffer from the inconsistency
problem, which our method tries to solve. Additionally, according
to a recent survey (Silla & Freitas, 2011), the top–down classifier
selection methods is one of the top general hierarchical classifiers
in terms of performance (other approaches with good performance
tend to be restricted to certain domains).

For MHC we used the same method for each local classifier. We
considered the same two alternatives as the top–down approach
(Naive Bayes and Random Forest). We evaluated the basic method

Fig. 4. Example of the test phase for a dag-structured taxonomy applying the MHC.
qi represents the different paths and PðCiÞ represents the probabilities predicted for
the corresponding nodes. The dash squares represents the different probabilities
predicted for the node with more than one parent.

Fig. 3. An example of the calculation of the probabilities for each path. (A) The class taxonomy. (B) Each node (except the root) depicts the predicted probability of its class.
The probabilities in each trajectory in the tree – for instance P1 ) P1:1 – are multiplied and the results are shown below; the trajectory with the highest probability is selected
(underlined).

3 http://www.daviddlewis.com/resources/testcollections/reuters21578.
4 http://mips.helmholtz-muenchen.de/proj/funcatDB/.
5 http://ccc.inaoep.mx/*tia/pmwiki.php?n=Main.Resources.
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(MBC), and the extension for non-mandatory leaf node prediction
based on information gain (MHC-NMLP).

4.3. Experiments

We evaluated the different classification schemes in terms of
two precision measures: a standard precision and the hierarchical
precision. The standard precision considers a classification correct
only if it exactly predicts the class of the test sample. The hierarchi-
cal precision considers that a classifier might be partially correct,
for instance if it predicts the parent or sibling of the correct class
of a sample. It is defined as:

hP ¼
P

i j Ĉi \ Ci j
j Ci j

ð6Þ

where Ĉi is the set of predicted classes for the test sample x and Ci is
the actual set of classes for x; the class set includes the more
specific class and all its ascendants in the hierarchy.

To perform the experiments we used the stratified five-fold
cross validation procedure. Tables 2 and 3 summarize the results
for the four datasets. Each cell has the symbol ‘‘⁄’’ if the precision
reported in that cell is statistically significantly better than the pre-
cision reported of the corresponding top–down classifier. Likewise,
each cell has the symbol ‘‘y’’ if the precision reported in that cell is
statistically significantly better than the precision of the classifier
selection method. Statistical significance was measured by the
paired two-tailed Student’s t-test, using a confidence level of 95%.

In these tables, MLP corresponds to the basic method that
returns the complete path and NMLP specifies that the option for
non-mandatory leaf prediction based on information gain was
used. The results of the two variants of the MHC are depicted, con-
sidering the two base classifiers (Naive Bayes and Random Forest).
For comparison the standard top–down approach is contrasted
with the two variants, and also the top–down classifier selection
method.

In general, MHC is statistically significantly better than the top–
down approach for the four data sets. Compared to the top–down
classifier selection method, the results are similar for the Funcat
and Reuters datasets, and MHC is statistically significantly better
in the case of the IAPR-TC12 and MIREX datasets. For almost all
the results, the information gain alternative presents better results,
so it seems that the idea of stopping the classification at certain
level based on information gain is useful. In terms of the base clas-
sifier, in most cases Random Forest has a superior predictive per-
formance, although in a few cases Naive Bayes has better results.

4.4. Running times

We also compared the training and classification times of the
MHC (MLP) versus the standard top–down and the top–down clas-
sifier selection methods. For this we considered the average train-
ing and classification times of each method in the 5 experiments in
the REUTERS domain, as it is the largest dataset (considering #
examples ) # attributes). The results are summarized in Table 4.

(Intel Processor Core I5 at 2.53 GHz with 6 GB of RAM, under Win-
dows 7.) From this table, it can be observed that the MHC is similar
in terms of efficiency to the standard top–down approach when
the same base classifier is used. However, it is between 6 and 7
times faster in training time than the classifier selection method,
depending on the base classifier.

In summary, the proposed approach is significantly better in
terms of standard and hierarchical precision to the top–down
approach; and it is very competitive and in most cases superior,
in terms of predictive performance, to a state-of-the-art algorithm
that selects the best classifier at each node (classifier selection),
and at the same time it is significantly faster.

4.5. Analysis

From the results of these experiments we can derive the follow-
ing conclusions:

1. MHCs reduce the inconsistency problem as demonstrated
with their superior performance with respect to the top–
down approach using the same base classifier.

Table 1
Characteristics of the databases used in the experiments.

DataBase Domain # Classes # Examples # Levels # Attributes Type of hierarchy

FunCata Genetics 30 1433 3 77 Tree
Reuters-21578b Text 25 6274 2 16145 Tree
IAPR-TC12c Image 25 45347 2 23 Tree
MIREX2005 Music 38 950 2 100 DAG

a Subset Cellcycle of the original hierarchy.
b Subset R52 of the taxonomy.
c The Landscape branch of the original hierarchy.

Table 2
Experimental results for the FUNCAT, REUTERS and IAPR-TC12 databases. Precisions
in percentage. The scheme with the highest hierarchical/standard precision is shown
in bold. An ‘‘⁄’’ is shown if it is statistically significantly better than the top–down
classifier; and a ‘‘y ’’ if it is statistically significantly better than the classifier selection
method.

Base classifier MHC Top–down

NMLP MLP

FUNCAT
Hierarchical precision
Naive Bayes 29.49 28.78 28.10
Random Forest 28.82⁄ 27.72 26.93
Classifier selection N/A N/A 31.11
Standard precision
Naive Bayes 22.22⁄! 16.67! 16.35
Random Forest 26.51⁄! 17.94⁄! 13.33
Classifier selection N/A N/A 14.92

REUTERS
Hierarchical precision
Naive Bayes 78.15⁄ 76.71 76.11
Random Forest 90.04⁄ 84.79 83.54
Classifier selection N/A N/A 89.27
Standard precision
Naive Bayes 75.69⁄! 70.01 70.01
Random Forest 91.27⁄! 79.04⁄ 77.32
Classifier selection N/A N/A 85.40

IAPR-TC12
Hierarchical precision
Naive Bayes 51.81⁄! 50.84 ⁄! 37.71
Random Forest 54.62⁄! 55.35⁄! 44.65
Classifier selection N/A N/A 45.19
Standard precision
Naive Bayes 55.59⁄! 39.52 41.72
Random Forest 60.36⁄! 47.45 47.98
Classifier selection N/A N/A 49.38
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2. In the comparison between the MHC and the top–down
classifier selection approach, there is not clear winner in
terms of precision. Although MHC reduces the inconsis-
tency problem, its local classifiers are not optimized as
in the classifier selection technique, so depending on the
database, one of these aspects could be more important.

3. In general the non-mandatory leaf prediction option has
higher standard and hierarchical precisions, by eliminat-
ing part of the path based on information gain.

4. It seems that the benefit of the MHC depends on the dif-
ficulty of the problem as indicated by the precision of the
standard top–down approach. In the databases where the
precision of the top–down is about 50% or higher, the pre-
cision of the HMC is nearly 10 points higher and it is also
significantly better than the classifier selection method.

5. The additional computational effort of the MHC with
respect to the top–down with the same base classifier is
minimum, resulting in very similar training times; how-
ever, the classifier selection method requires more train-
ing time.

5. Conclusions and future work

In this paper, we have described a multidimensional hierarchi-
cal classification algorithm that starts by building a multi-class
classifier for each parent node in the hierarchy. Contrary to previ-
ous approaches, during classification phase, all the local classifiers
are applied simultaneously to each instance and the output is given
by considering the most probable path. In the traditional way only
one path is considered through all the classification process.
According with the experiments, if we consider all the possible
paths the occurrence of the inconsistency problem will be reduced.
We also developed an extension to decide when to stop in the hier-
archy based on information gain, contrary to those based on
threshold.

The main contribution of this work is a novel hierarchical clas-
sification scheme based on multidimensional classification. This

approach explores all the possible paths avoiding the inconsistency
problem. Additionally, our work incorporates non-mandatory leaf
prediction based on information gain. Finally, our work can be
applied to tree and DAG taxonomies.

The result of the experiments demonstrates that our work
improves the traditional top–down approach for multi-class classi-
fiers, however our results was not superior with respect to the clas-
sifier selection approach. The exploration of all the hierarchy
implies the sum or multiplication of all the classification results
in each path, however, we did not prove our method on imbal-
anced taxonomies. The information gain for non-mandatory leaf
prediction have good results but we need to do more experiments
to strengthen the results presented in this work.

As future work we plan to experiment with the idea of incorpo-
rate the information of each parent class predictions to their
immediate predecessor along the different paths to improve the
performance. This process is known as chain classification. Due
that we explore the entire hierarchy, we want to extend the
approach for multi-label hierarchical classification. We would also
like to explore combining the outputs of different types of
classifiers.
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