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ABSTRACT
Nearest-neighbor (NN) methods are highly effective and widely
used pattern classification techniques. There are, however,
some issues that hinder their application for large scale and
noisy data sets; including, its high storage requirements, its
sensitivity to noisy instances, and the fact that test cases
must be compared to all of the training instances. Proto-
type (PG) and feature generation (FG) techniques aim at
alleviating these issues to some extent; where, traditionally,
both techniques have been implemented separately. This
paper introduces a genetic programming approach to tackle
the simultaneous generation of prototypes and features to
be used for classification with a NN classifier. The proposed
method learns to combine instances and attributes to pro-
duce a set of prototypes and a new feature space for each
class of the classification problem via genetic programming.
An heterogeneous representation is proposed together with
ad-hoc genetic operators. The proposed approach overcomes
some limitations of NN without degradation in its classifi-
cation performance. Experimental results are reported and
compared with several other techniques. The empirical as-
sessment provides evidence of the effectiveness of the pro-
posed approach in terms of classification accuracy and in-
stance/feature reduction.

Categories and Subject Descriptors
I.5.2 [Pattern recognition]: Design Methodology—Classi-
fier design and evaluation, Feature evaluation and selection

Keywords
Prototype Generation, Feature Extraction, NN Classifier,
Genetic Programming, Pattern Recognition.

1. INTRODUCTION
Pattern classification is concerned with the construction

of predictive models that can map instances to a predefined
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set of classes or labels. This is one of the main problems in
machine learning and pattern recognition and it has been a
widely studied field [9]. Among the variety of classification
models proposed so far, nearest-neighbors (NN) methods are
among the most popular ones [23]. This type of classifiers
store all training instances and when classifying a new ob-
ject, they compare it to all cases in the training set. The
label for the test object is obtained by processing the labels
associated to its nearest training instances.

Although NN methods are highly effective, and easy to
implement/understand, they present some issues that hin-
der their application to certain types of problems. First, NN
methods have interesting convergence properties as the size
of the training set increases, however, storing large training
sets consumes significantly more resources. Second, when
classifying a new test object it has to be compared to every
instance in the training set, which becomes computationally
expensive for large data sets. Third, similar to other classi-
fication models, NN techniques are susceptible to the curse
of dimensionality. Finally, another important issue of NN
methods is that they are sensitive to noisy instances (e.g.,
misclassified instances and outliers).

These weaknesses of NN methods have been tackled with
different approaches, mainly with two variants of instance
reduction, namely, instance selection [7] and prototype gen-
eration [21]. Instance reduction techniques select a subset
of instances to substitute the original training set. Proto-
type generation (PG) methods produce artificial instances
and can represent better the input space, therefore are more
general. Both methods diminish the storage requirements
for NN classifiers and make more efficient the labeling pro-
cess. However, instance reduction techniques do not deal
with high-dimensionality and noisy data issues in NN meth-
ods. For dealing with these shortcomings, feature selection
and construction can be applied; these methodologies aim at
reducing the dimensionality of data and extracting informa-
tive data representations [8]. Although, instance and feature
reduction approaches are beneficial for NN classifiers, both
methodologies are commonly applied separately. Hence, not
all NN’s concerns are addressed by existing methods.

This paper introduces SGPFGP: Simultaneous Genera-
tion of Prototypes and Features through Genetic Program-
ming, a novel approach to simultaneous feature and pro-
totype generation for NN-based classification. SGPFGP
learns how to combine instances and attributes to generate
a set of prototypes and a new feature space for classification
tasks via genetic programming. An heterogeneous repre-
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sentation is proposed and appropriate genetic operators are
introduced. To the best of our knowledge, this is the first
approach that aims at learning simultaneously class-specific
prototypes and features to be used for NN-based classifica-
tion. The effectiveness of the proposed method is evaluated
and its performance is compared to alternative techniques.
Experimental results show that SGPFGP compares favor-
ably to state-of-the-art PG methods in terms of accuracy
and reduction, with the additional benefit of dimensionality
reduction.

The rest of this paper is organized as follows. Next sec-
tion reviews related work on instance and feature reduc-
tion. Section 3 describes in detail the proposed SGPFGP
approach. Section 4 presents the experimental framework
to assess SGPFGP. Section 5 reports experimental results
obtained by the proposed method. Finally, Section 6 out-
lines conclusions and discusses future work directions.

2. RELATED WORK
The PG problem has been approached in several ways,

for a comprehensive study we refer the reader to [21], where
Triguero et al. review and classify most of the existing PG
methods up to 2012, additionally, a taxonomy and experi-
mental comparison of these methods is also reported.

Most PG methods are iterative, they start with a set of
prototypes (either randomly selected from the data set or
artificially generated) and these are refined trying to maxi-
mize the classification performance. A classical representa-
tive of iterative PG methods is learning vector quantization
(LVQ) [9], although many alternative methods have been
proposed. For instance, in [21] the best method for PG in
terms of classification performance was GENN (Generalized
Editing using NN) [11]. GENN is a detrimental method that
iteratively removes and re-labels instances. GENN achieves
substantially better results than any other PG method com-
pared in [21], although it was among the worse in terms of
reduction of instances. On the other hand, PSCSA (Pro-
totype Selection Clonal Selection Algorithm) obtained the
best performance in terms of reduction [6]. PSCSA models
the PG problem as an optimization one and uses an artifi-
cial immune system, the clonal selection algorithm, to solve
it. This method is able to exactly select a single example
per class, achieving the best reduction performance among
the other 24 methods considered in [21]. However, its per-
formance in terms of accuracy was worse than many other
strategies. Other effective methods are based on bio-inspired
optimization as well, see e.g., [5, 15, 2, 4, 19]. All of these
methods evolve a population of individuals (codifying pro-
totypes) trying to maximize the classification performance.

Although very effective PG methods have been proposed
so far, it is somewhat disappointing that these methods have
been developed independently of feature reduction techniques.
Nevertheless, a few efforts in this direction have been pro-
posed. Cagné et al. propose co-evolutionary approaches to
simultaneously learn prototypes and neighborhood distance
measure [1]. Both, competitive and cooperative schemes,
are evaluated. Hussein et al. propose a genetic algorithm
for instance selection, and feature weighting [10]. The main
conclusion from [10] is that NN performance increases when
one combines both types of methods. Paredes et al. used
gradient descend to tackle the same problem, resulting in a
very effective model [16]. More recently, Triguero et al. pro-
posed a differential evolution technique that combines PG

with feature weighting [22]. The above methods perform in-
stance selection and feature weighting, allowing a reduction
in the number of instances of the training set; however, they
do not reduce data dimensionality.

Kuncheva and Jain propose a genetic algorithm for in-
stance and feature selection [14]. Pedrajas et al. propose
a similar evolutionary algorithm but put more emphasis on
efficiency [17]. More recently, Chen et al. propose a multi-
objective evolutionary algorithm for instance and feature se-
lection [3]. Although being effective, these methods are still
limited in terms of not being able to learn or to generate
new features. Besides, as stated above, instance selection
methods are a special case of PG, and therefore, generating
prototypes is advantageous over selection (see partial/early
evidence in [13]). Finally, it should be noted that the simul-
taneous methods from [14, 3] have only been evaluated on
very small data sets.

This paper proposes SGPFGP, a method for simultaneous
prototype and feature generation based on genetic program-
ming. Contrary to previous hybrid approaches (instance +
feature reduction) for selection, the proposed approach is
completely based on the generation paradigm. That is, the
aim is to build artificial instances and new features to im-
prove NN classification performance. Escalante et al. have
recently proposed a PG method based on genetic program-
ming that combines instances to produce prototypes [4]. The
proposed method extends that work by also allowing fea-
tures generation, and by proposing a modeling framework
that selects class-specific prototypes and features.

3. SIMULTANEOUS GENERATION OF
PROTOTYPES AND FEATURES

Genetic programming is one of the youngest evolutionary
algorithms [12], it has the distinctive feature that programs,
codified in elaborated data structures, are evolved to solve
complex modeling problems. Herein, a method for Simulta-
neous Generation of Prototypes and Features through Ge-
netic Programming (SGPFGP) is introduced. The goal is
to learn class-specific prototypes and features for pattern
classification by NN.

The underlying hypotheses of SGPFGP are that proto-
types for a class are formed by combining training instances
that belong to that class; likewise, the generated features
for a particular class are formed by combining features of
instances that belong to that class. By considering a tree-
structure for codifying prototypes and features, and letting
leaf nodes to denote instances (resp. features) while non-
terminal nodes to denote operators between leaf nodes, it is
quite natural to use genetic programming to evolve a popula-
tion of tree-prototypes and tree-features trying to maximize
the classification performance of an NN classifier. The rest
of this section provides a detailed description of the proposed
method.

3.1 Considered scenario
Let T = {(x1, y1) . . . , (xN , yN )} be a training set of la-

beled instances, with xi ∈ Rd and yi ∈ C = {1, . . . , K},
where d is the problem dimensionality and K is the number
of classes in the considered problem. The goal is to generate
a set of sets of prototypesP∗ = {P1, . . . ,PK} (one set of pro-
totypes per class) where each set of prototypes is defined as
follows: Pk = {(wk

1 , y
k
1 ), . . . , (w

k
Lk

, yk
Lk

)}, for k = 1, . . . ,K
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such that Lk << N , where Lk is the number of prototypes
for class k, wk

i ∈ Rdk , and dk is dimensionality of the feature
space for prototypes in set Pk. This means that each set of
prototypes Pk is associated to a single class k and the pro-
totypes of this class have the same dimensionality dk, which
is not necessarily the same for different classes.

3.2 Representation
For learning P∗ a genetic program is proposed where each

individual codifies a possible solution to this problem, see
Figure 1. Specifically, individuals are represented by a set of
trees pairs: {(S1

p ,S1
f ), . . . , (SK

p ,SK
f )}, where Sk

p = {skp,1, . . . ,
skp,Lk

} is a set of trees for generating class k prototypes and

Sk
f = {skf,1, . . . , skf,dk} is a set of trees for generating class k

features. Each tree is associated to a single prototype (skp,i)
or feature (skf,j), and both sets of trees are dependent to each

other: prototypes generated via Sk
p use features generated

with Sk
f . In this way, pairs (Sk

p ,Sk
f ) are associated to a set

of prototypes: Pk = {(wk
1 , y

k
1 ), . . . , (w

k
Lk

, yk
Lk

)}.

Figure 1: Representation of an individual: class-
specific prototype-feature trees.

Figure 2: Prototype representation (skp,i, left): in-
stances are combined; and feature representation
(skp,i, right): features are combined.

Hence, in SGPFGP individuals are encoded as trees skp,i
and skf,j in the genetic program (see Figure 2). Each tree

skp,i (resp. skf,j) can generate a prototype (resp. feature) by
combining instances (resp. features) taken from the training
set T . That is, the terminal set for prototype-trees skp,i is the
subset of instances from the training set T that are labeled
with class k. Likewise, the terminal set for feature-trees skf,j
is the set of d−dimensional feature vectors of instances in T
that belong to class k.

The function set for combining instances and features is
the following set of operators: {+,−, ∗, /,Min,Max}, all of

them with arity two. In a preliminary study, other oper-
ators were evaluated (including operators of arity 1); how-
ever, better results were observed with the above mentioned
function set.

3.3 Fitness function
The proposed representation is implemented into a stan-

dard genetic program [18], with the aim of maximizing the
classification performance of a 1NN1 classifier when using
prototypes and features induced by different individuals.
Accordingly, the fitness function for the genetic program is
simply the classification performance obtained by a 1NN
when classifying all instances in a validation set. Instances
in the validation set are not considered in the terminal set of
prototype trees (i.e., the validation set and T are disjoint).
The motivation behind this hold-out split is to avoid, to
some extent, generating overfitted prototypes/features.

More specifically, to assess the quality of every individ-
ual, the next procedure is followed: the prototypes induced
by prototype-trees are obtained using the input space of
feature-trees for each class. Next, every instance to be clas-
sified with the prototypes is first projected into the features
learned by the genetic program for each class, and then it is
compared to the prototypes of different classes (each com-
parison in the corresponding input space). The test instance
is assigned to the class of the nearest prototype. One should
note that by proceeding in this way, the 1NN classifier is
allowed to learn specific features and prototypes for each of
the considered classes.

3.4 Genetic program and considered opera-
tors

Algorithm 1 presents the details of the proposed SGPFGP
method. The population was initialized with ramped-half-
and-half considering a maximum tree deep of D max. For
initializing prototype-trees per class half of the trees are ini-
tialized with the full method, and the other half with the
grow technique, with the restriction of using instances of
the same class. Feature-trees were initialized similarly, but
without the class-restriction, because features are initially
common to all instances. For initialization, the proposed
method takes as input PP and PF parameters, which spec-
ify the number of initial prototype-trees and feature-trees,
respectively. One should notice that, although the user has
to specify PP and PG, after initialization, the genetic pro-
gram automatically determines/adjust the final number of
prototypes and features.

Generic genetic operators and ad-hoc ones are considered
for the SGPFGP method. An extensive preliminary exper-
imentation was conducted to determine the best operators
combination, here the ones that provided the best results
are described (individuals are selected via tournament):

• Crossover: given two individuals, a prototype (resp.
feature) tree from each parent is randomly selected,
then a subtree of each selected tree is chosen and ex-

1One should note that the selection of 1NN (instead of any
other KNN classifier) is not arbitrary. Most previous studies
on PG for NN classification have used 1NN as well, see [21].
This is, in part, motivated by the fact that using 1NN al-
lows PG methods to be able (at least theoretically) to reach
the optimal number of prototypes (1 per class). Neverthe-
less, the proposed method can also work with other KNN
classifiers.
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Algorithm 1 Simultaneous Generation of Prototypes and
Features through Genetic Programming.

Require: :
T : Training Set;
V : Validation Set;
Generations : Number of Generations
Population : Number of Individuals
PP : Proportion of initial prototypes
PF : Proportion of initial features

Ensure: Bestx : The best individual, the solution that ob-
tains the highest accuracy in V.
P ⇐ Ramped-half-and-half (PP, PF, T )
Bestx ⇐ ∅
FBest⇐ −Inf
i = 0
while i <= Generations do

for j = 1→ Population do
f(j)← fitness(Pj ,V)
if f(j) > FBest then

FBest← f(j)
Bestx ⇐ Pj

end if
end for
Pool⇐ Sampling(P )
Offspring ⇐ MultiCrossover(Pool)
Offspring ⇐ Crossover(Offspring)
Offspring ⇐ Mutation(Offspring)
P ⇐ Selection(P,Offspring)
i← i+ 1

end while
return Xp

changed. The outputs of this operator are two off-
spring. This process is repeated for each class asso-
ciated to the classification problem. The operator is
applied to all classes because the representation is com-
plex and affecting a class at a time would not have a
significant effect in the overall population.

• Mutation: given an individual, for each class, a ran-
domly selected tree is eliminated and a new one is gen-
erated (using the same process as in the initialization).
This procedure is similar for both prototype and fea-
ture trees.

• Multi-Crossover: a new crossover operator is intro-
duced due to the representation complexity. Given two
individuals, a new offspring is generated by combining
trees from the parents. The offspring tree, for each
class, is selected from the corresponding trees of the
parents with uniform probability. This procedure is
similar for both prototype and feature trees.

Genetic operators are applied with certain probabilities
and in a predefined order (see Algorithm 1). A popula-
tion of trees is evolved and the best individual found during
the search process is returned. In the rest of the paper the
performance of the proposed method is evaluated for simul-
taneous prototype and feature generation.

4. EXPERIMENTAL FRAMEWORK
For the experimental evaluation of the proposed method,

the suite of data sets introduced by Triguero et al. [21] is

considered. This benchmark consists of 59 data sets associ-
ated to different classification problems. Table 1 describes
the considered data sets.

This suite comprises classification problems with varied
characteristics in terms of number of classes, number/type
of attributes (nominal and numeric), and number of in-
stances. Table 2 summarizes the main features of the bench-
mark. This suite has been widely used for benchmarking GP
methods [21, 4]. Commonly, results of PG methods are re-
ported separately for small (data sets with less than 2,000
instances) and large (data sets with at least 2,000 instances)
data sets. Accordingly, results for both types of data sets
are reported. Different aspects of the proposed method are
assessed through this benchmark and a performance com-
parison to other approaches using the same suite is carried
out.

The evaluation methodology adopted in [21] consists of
applying PG methods to each data set in a 10-fold cross
validation scheme. That is, each data set is split into 10
subsets, and 10 rounds of training and testing are performed;
in each round 9 subsets are used as training set and 1 subset
is used for testing, the process is repeated 10 times using a
different subset for testing each time. This means that for
each data set the proposed PG method is applied 10 times,
every time the method learns prototypes and features using
the training subsets and the generated prototypes/features
are evaluated in the test set.

For the evaluation process, a 1NN rule is used by the
generated prototypes2. One should note that a single run of
the proposed method over the whole benchmark represents
590 executions (10 times per data set). It is important to
emphasize this because the same evaluation methodology
as in [21] has been adopted (using exactly the same data
partitions for training and testing in each of the 10-folds
per data set), thus results are directly comparable to those
reported by Triguero et al. and other authors that have used
the same collection.

The following experimental settings are defined to assess
the proposed approach: the number of generations is set to
50, the population size is set to 100, and the maximum tree
depth is fixed to 3. The values of these parameters were
determined after a brief preliminary study on parameter se-
lection. Finally, to compare results obtained from different
methods, a Wilcoxon signed-rank test is used to determine if
the difference in performance is statistically significant, with
a confidence level of 95%.

5. EXPERIMENTAL RESULTS
This section reports experimental results to show the ef-

fectiveness of the proposed method. The performance of
SGPFGP is compared against 24 other PG techniques that
have been evaluated with the same benchmark. The analy-
sis starts by visually analyzing the positioning of the learned
prototypes for a 2D data set. Next, the SGPFGP perfor-
mance is evaluated in terms of classification accuracy, and
instance/feature reduction rates.

2One should note that since there is a subset of prototypes
and features per class. Every test-instance has to be rep-
resented and compared using the set of prototypes and fea-
tures learned for each class. The test-instance is labeled with
the class of the nearest prototype.
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Table 1: Description of the data sets used for the
experimental study [21]. The number of samples,
the number of attributes and the number of classes
are shown per data set.
Data set Samples Attributes Classes
Abalone 4174 8 28
Appendicitis 106 7 2
Australian 690 14 2
Autos 205 25 6
Balance 624 4 3
Banana 5300 2 2
Bands 539 19 2
Breast-Cancer 286 9 2
Bupa 345 6 2
Car 1728 6 4
Chess 3196 36 2
Cleveland 297 13 5
Coil2000 9822 85 2
Contraceptive 1473 9 3
Crx 125 15 2
Dermatology 366 33 6
Ecoli 336 7 8
Flare-Solar 1066 9 2
German 1000 20 2
Glass 214 9 7
Haberman 306 3 2
Hayes-Roth 133 4 3
Heart 270 13 2
Hepatitis 155 19 2
Housevotes 435 16 2
Iris 150 4 3
Led7digit 500 7 10
Lymphography 148 18 2
Magic 19020 10 2
Mammographic 961 5 2
Marketing 8993 13 9
Monks 432 6 2
Movements-libras 360 90 15
Newthyroid 215 5 3
Nursey 12960 8 5
Pageblocks 5472 10 5
Penbased 10992 16 10
Phoneme 5404 5 2
Pima 768 8 2
Ring 7400 20 2
Saheart 462 9 2
Satimage 6435 36 7
Segment 2310 19 7
Sonar 208 60 2
Spambase 4597 57 2
Spectheart 267 44 2
Splice 3190 60 3
Tae 151 5 3
Texture 5500 40 11
Thyroid 7200 21 3
Tic-tac-toe 958 9 2
Titanic 2201 3 2
Twonorm 7400 20 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Wisconsin 683 9 2
Yeast 1484 8 10
Zoo 101 16 7

Table 2: Summary of features for the 59 data sets
of the considered benchmark [21].

Small Large
# data sets 40 19
# Classes [2, 15] [2, 28]
# Instances [101, 1,728] [2,201, 19,020]
# Attributes [3, 90] [2, 85]

# BDs w. Nominal atts. 7 3
# BDs w. Numerical atts. 22 14
# BDs w. Mixed atts. 11 2

5.1 Visualization learned prototypes
In this section, the prototypes generated with SGPFGP

using a 2D-data set are presented. The goal of this experi-
ment is to analyze how the prototypes learned by SGPFGP
are distributed in the input space for a complex classifica-
tion problem. The banana data set is associated to a binary
classification task (2-classes) that contains 5300 instances
described by 2 attributes. Figure 3 shows a subsampling of
the original data set; it can be seen that the decision surface
for this problem is non linear and very complex to capture.

Figure 3: Banana data set.

Recall that the proposed method generates specific fea-
tures for each class, hence, for this data set the SGPFGP
output is two sets of prototypes/features. Figures 4 and 5
show a subsampling of the banana data set projected into
the feature spaces of each of the classes. In each figure the
corresponding prototypes are also plotted. From these fig-
ures, it can be seen that features for different classes result in
very different projections of the training data. The projec-
tion induced by features from class 2 (Figure 5) somewhat
preserves the structure of the original problem, while the
projection for features from class 1 (Figure 4) is totally dif-
ferent. In both projections, one can see that the generated
prototypes effectively capture the distribution of training ex-
amples of the respective class, i.e., prototypes of a class are
closer to instances of its own class than to those of different
classes.

For this particular example, the SGPFGP method selects
7 and 6 prototypes for classes 1 and 2, respectively; which
represents a reduction performance of 0.9975. SGPFGP
achieves an average classification performance of 0.8628 for
this data set, which is very close to the performance of the
best method for this data set in the comparative study of [21]
(the DEPUR method obtained 0.896 [20]).
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Figure 4: Feature space and prototypes of class 1
for the Banana data set.

Figure 5: Feature space and prototypes of class 2
for the Banana data set.

5.2 Classification performance of prototypes
Table 3 shows the average classification performance ob-

tained by the SGPFGP approach for small and large data
sets, for comparison the corresponding results for 1NN us-
ing the whole training set are included as well as the perfor-
mances (from [21]) obtained by the best methods in terms
of accuracy (GENN [11]) and reduction (PSCSA [6]).

Table 3: Average classification accuracy for
SGPFGP and reference methods.

SGPFGP GENN [11] PSCSA [6] 1NN
Small 0.719 ± 0.06 0.756 ± 0.05 0.668 ± 0.07! 0.734 ± 0.05
Large 0.802 ± 0.01 0.813 ± 0.01 0.670 ± 0.02! 0.80± 0.01

! statistically significant difference.

From Table 3, it is observed that prototypes and features
generated by SGPFGP do not degrade significantly the clas-
sification performance obtained with 1NN when using the
whole data set. Therefore, data dimensionality and number
of training instances are reduced without compromising the
classification performance.

The proposed method outperforms PSCSA by a large mar-
gin over both small and large data sets, the differences are
statistically significant. On the other hand, GENN outper-
forms SGPFGP by about 4% and 1% for small and large
data sets, however these differences are not statistically sig-
nificant. These results confirm that SGPFGP is a very
competitive method in terms of accuracy, achieving simi-
lar performance as the best PG methods that were evalu-
ated in [21]. Interestingly, better results were obtained by

SGPFGP for large data sets; this is a very positive result be-
cause PG methods are precisely designed to deal with large
data sets.

It is important to mention that SGPFGP classification
performance is similar to that obtained by another PG method
based on genetic programming [4]. However, SGPFGP ob-
tains substantially better instance-reduction performance and
is able to reduce data dimensionality.

Table 4 shows the average execution time (in seconds) for
the classification phase of SGPFGP, compared against the
execution time of 1NN over the large data sets. We can
appreciate that the proposal is far more efficient, it reduces
a 98.45% of the time in the classification. One should note
that the execution time in SGPFGP includes the processes of
projecting data into different feature spaces and estimating
distances.

Table 4: Average execution time (seconds) in the
classification step.

Dataset SGPFGP 1NN
Large 0.0067 0.1695

5.3 Reduction performance of prototypes
Table 5 shows the average instance-reduction rates for

SGPFGP, GENN, PSCSA and 1NN. From this table, it is
observed that SGPFGP performance is very competitive as
well. SGPFGP significantly outperforms GENN (improve-
ments higher than 80%) and achieves virtually the same re-
duction performance as PSCSA, which is the best method in
terms of reduction evaluated in [21]. In fact, SGPFGP offers
a better tradeoff between accuracy (Table 3) and reduction
(Table 5) than the referenced methods. These results can
be better appreciated in Figures 6 and 7, where accuracy vs.
reduction are plotted for the 24 methods considered in [21]
for small and large data sets, respectively.

Table 5: Average reduction rates obtained by the
considered methods.

SGPFGP GENN PSCSA 1NN
Small 0.983 ± 0.0007 0.186 ± 0.0205! 0.985 ± 0.0001 0± 0
Large 0.994 ± 0.0005 0.157 ± 0.0049! 0.998 ± 0.0001 0± 0

! statistically significant difference

5.4 Accuracy vs. reduction tradeoff
It can be seen from Figure 6 that for small data sets,

the performance in reduction of SGPFGP is among the best
ones; although its accuracy is lower than several other tech-
niques (e.g., PSO [15]). However, as depicted in Figure 7, for
large data sets the proposed approach offers the best tradeoff
between accuracy and reduction. Achieving similar accuracy
as ENPC [5] and DEPUR [20] (two highly effective PG tech-
niques), but with much better reduction performance. Also
the fact that GENN obtains highly accurate prototypes at
the expense of poor reduction performance is confirmed.

If the Pareto front is constructed using the reduction and
accuracy performances for all of the considered PG methods,
SGPFGP would be part of it (i.e., it dominates many other
PG methods in both figures). SGPFGP would be located
in the upper right corner of the Pareto front, making it an
ideal solution that fulfills the accuracy vs. reduction tradeoff.
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Figure 7: Average reduction (x−axis) vs. accuracy
(y−axis) for large data sets.

Therefore, it is possible to conclude that SGPFGP is a very
competitive method in terms of the accuracy and instance
reduction tradeoff, mainly for large data sets.

5.5 Feature generation
The proposed PG method has demonstrated to be a com-

petitive approach. Moreover, experimental results have shown
the additional benefit of dimensionality reduction. In this
regard, the average feature reduction rates were of 0.418
and 0.41 for small and large data sets, respectively. Thus,
SGPFGP generates representations that account for only
60% of the original dimensionality and yet it is able to ob-
tain state-of-the-art performance. The combined reduction
of instances and features results in speeding up 1NN when
classifying test instances. As future work we will compare
the performance of SGPFGP with that of alternative feature
selection/extraction techniques.

5.6 Performance over different attribute types
Because the considered data sets can have nominal, nu-

meric or mixed attributes, it is worth analyzing SGPFGP

performance for these different types of attributes. Table 6
shows the average accuracy obtained by the proposed method
for different attribute types using small and large data sets.
Nominal attributes are better exploited by the proposed ap-
proach for both small and large data sets (please note that
there are only 10 data sets with only-nominal attributes, 7
small and 3 large ones). Although for large data sets the
performance is virtually the same when using nominal or
numeric attributes.

It is interesting that better performance is obtained by
the proposed method when a single attribute type was con-
sidered (either nominal or numeric) and that SGPFGP has
problems for data sets with mixed attributes. This result
could be due to the nature of the proposed approach which
combines attributes to generate new features: combining at-
tributes of different nature does not necessarily result in a
better feature.

Table 6: Average accuracy for different data types.
Nominal Numerical Mixed

Small 0.768 ± 0.04 0.724 ± 0.07 0.671 ± 0.06
Large 0.828 ± 0.02 0.823 ± 0.01 0.613 ± 0.01

6. CONCLUSIONS AND FUTURE WORK
This paper introduced SGPFGP a novel approach to si-

multaneous feature and prototype generation for NN-based
classification. SGPFGP learns to combine instances and at-
tributes to generate class-specific prototypes and features
via genetic programming. A heterogeneous representation is
proposed and appropriate genetic operators are applied. To
the best of our knowledge, this is the first approach that aims
at learning simultaneously prototypes and features for ev-
ery class used in NN-based classification. The performance
of the proposed method is evaluated and compared with a
wide variety of other PG methods. Experimental results
show that SGPFGP compares favorably to state-of-the-art
PG methods in terms of accuracy and reduction, with the
additional benefit of reducing data sets dimensionality.

Conclusions of this work can be summarized as follows:

• SGPFGP is able to reduce data dimensionality and
the number of training instances without compromis-
ing the classification performance. In fact, SGPFGP
obtains similar performance as the most effective PG
methods proposed so far.

• Better results are obtained by SGPFGP for large data
sets, making it suitable for large scale classification
problems.

• Instance-reduction performance of SGPFGP is very
close to the optimal reduction rates (i.e., one instance
per class). SGPFGP outperforms most of the reference
methods considered in the study in terms of instance
reduction.

• SGPFGP reduces about 40% data sets dimensionality.
Building new features that are more informative for
designing NN classifiers.

• SGPFGP obtains better results when data sets at-
tributes are of the same type (either nominal or nu-
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meric). This is possibly due to the fact that the cur-
rent representation and operators are not designed to
combine heterogeneous attributes.

• During the search SGPFGP tries to balance the num-
ber of instances per class. This is good for database
problems with unbalanced data.

Current and future work include approaching the problem
of simultaneous feature-prototype generation with a multi-
objective genetic program that can result in solutions with
better tradeoffs among the objectives involved in the prob-
lem (e.g., accuracy + instance-reduction + dimensionality-
reduction). We would also like to compare the proposed
approach with feature extraction/construction methods in
the state-of-art. Finally, the proposed approach is currently
being assessed on real and large scale data sets, including
object recognition and image annotation data.
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