
Qualitative Transfer for Reinforcement Learning
with Continuous State and Action Spaces

Esteban O. Garcia, Enrique Munoz de Cote, and Eduardo F. Morales

Instituto Nacional de Astrófisica, Óptica y Electrónica,
Luis Enrique Erro # 1. Tonantzintla, Puebla, México

{eomargr,jemc,emorales}@inaoep.mx
http://ccc.inaoep.mx

Abstract. In this work we present a novel approach to transfer knowl-
edge between reinforcement learning tasks with continuous states and
actions, where the transition and policy functions are approximated by
Gaussian Processes (GPs). The novelty in the proposed approach lies in
the idea of transferring qualitative knowledge between tasks, we do so
by using the GPs’ hyper-parameters used to represent the state transi-
tion function in the source task, which represents qualitative knowledge
about the type of transition function that the target task might have.
We show that the proposed technique constrains the search space, which
accelerates the learning process. We performed experiments varying the
relevance of transferring the hyper-parameters from the source task into
the target task and show, in general, a clear improvement in the overall
performance of the system when compared to a state of the art reinforce-
ment learning algorithm for continuous state and action spaces without
transfer.

Keywords: Transfer learning, Reinforcement learning, Gaussian Pro-
cesses, Hyper-parameters.

1 Introduction

The objective in reinforcement learning (RL) is to find a sequence of actions that
maximizes a long-term cumulative reward. An RL algorithm achieves such an
objective by exploring the world and collecting information about it in order to
determine such sequence of actions [16]. RL algorithms provide mechanisms to
learn solutions without the need of human experience. However, when these are
applied to real world problems, two major problems arise: (i) a large number of
samples or interaction time with the environment is needed to learn an optimal
solution, and (ii) after an agent has learned to solve a task, if it is required to
solve a different (although similar) task, the learning process must be restarted.

Typically, RL is used on discrete state-action spaces, despite the fact that,
most real-world problems involve continuous domains and discretizations of the
domain variables may lead to very large discrete state-action spaces or imprecise
policy functions that may harm the learning process [7,3]. Several approaches

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 198–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://ccc.inaoep.mx

Qualitative Transfer for Reinforcement Learning 199

have been proposed to deal with continuous domains, (e.g., [9,8,11,7,2]), most
of them use function approximators. In particular, Gaussian Processes (GPs)
have been used to represent value functions [6,5,14,1], and more recently, to
represent transition function models with very promising results [12,13,4,3,2]. In
this paper, we use GPs to represent policy and state transition functions.

A common approach to lessen the problem of learning a new, although similar
task is use transfer learning (TL). Several approaches have been proposed where
the source and target tasks may have different transition functions, state spaces,
start or goal states, reward functions or action sets [18]. In this paper, we assume
that there is only one source task and that the source and target tasks have the
same variables.

Most of the TL methods for RL that use the same assumptions as us, focus
on discrete tasks and model-free learning methods. In [10] and [17] model-based
learning methods are proposed to transfer samples (tuples or instances of the
form < s, a, r, s′ >) from the source task to the target task. Contrary to pre-
vious approaches, in this paper, we are interested in transferring information
about the transition function. In particular, we propose a batch learning method
which transfers information from the GP hyper-parameters of the state transi-
tion function to represent prior distributions of functions over the state transition
function of the target task. We will show that by providing a family of functions
as prior information about the underlying state transition function, significant
reductions can be obtained in the convergence of the algorithm. Our proposal
gradually incorporates the information from the target task producing a more
stable process and faster convergence times. The proposed methodology also uses
the source task policy function to initialize the policy in the target task. This
creates more informative initial traces in the target task and a further boost
to the convergence of the algorithm. The main contribution of this paper is a
relatively simple, yet very effective approach for transfer learning in continuous
state and action spaces, based on two intuitive ideas: (i) Within similar domains,
you can expect similar properties on the state transition functions. This is im-
plemented with a gradual transit between the hyper-parameters of the source
task to those of the target task. (ii) Without any prior knowledge, your best ini-
tial trial is obtained using the policy learned in the source task. We performed
experiments on the inverted pendulum under different conditions and show a
significant improvement in the learning process.

2 Background

RL problems are typically formalized as MDPs, defined by 〈S,A, P,R〉, where S
is the set of states, A is the set of possible actions that the agent may execute,
P : S×A×S → [0, 1] is the state transition probability function, describing the
task dynamics, R : S×A → R is the reward function measuring the performance
of the agent. A policy π : S → A is defined as a probability distribution over
state action pairs. In the case of continuous tasks, S and A are continuous spaces

200 E.O. Garcia, E. Munoz de Cote, and E.F. Morales

and functions approximators have to be used to represent the functions P and
π, in this work we use GPs.

A Gaussian Process is a generalization of the Gaussian probability distribu-
tion. Given a set of input vectors xi arranged as a matrix X = [x1, . . . ,xn] and a
vector of training observations y = [y1, . . . , yn]#, Gaussian Process methods for
regression problems assume that the observations are generated as yi = h(xi)+ε,
ε ∼ N (0,σ2

ε). Thus the objective is to infer a model of the function h that gen-
erates the data. Similar to a Gaussian distribution, which is fully specified by a
mean vector and a covariance matrix, a GP is specified by a mean function m(·)
and a covariance function k(·, ·), also called a kernel.

Given a GP model of the latent function h ∼ GP(m, k), it is possible to
predict function values for an arbitrary input x∗.

The covariance function k commonly used is the squared exponential kernel:

k(x̃, x̃′) = α2 exp(−1

2
(x̃ − x̃′)#Λ−1(x̃− x̃′)) + δx̃x̃′σ2

ε (1)

where x̃ = [x#u#]#, α2 is the variance of the transition function f , Λ =
diag(['21, . . . , '

2
D]), which depends on length-scales 'i, and δx̃x̃′ denotes the Kro-

necker delta.
The hyper-parameters α2, ', σ2

ε describe the shape of the functions in the
prior distribution (e.g., smoothness, noise tolerance).

These hyper-parameters are often optimized by evidence maximization (see
[15] for further details).

The unknown transition function P can be described as xt = f (xt−1, at−1) ,
f ∼ GP(m, k), where xt ∈ S is the state of the agent at time t, with continuous-
valued states x ∈ RD and actions a ∈ A, A = RF . Following [2], the transition
model f is distributed as a Gaussian Process with mean function m and covari-
ance function k, with sample tuples of the form (xt−1, at−1) ∈ RD+F as inputs
and corresponding ∆t = xt − xt−1 + ε ∈ RD, ε ∼ N (0,Σε), as training targets.

The objective in RL is to find a policy π: RD (→ RF that minimizes the
expected accumulative cost given as:

V π(x0) =
T∑

t=0

E [c(xt)],x0 ∼ N (µ0,Σ0) (2)

which is the sum of expected cost c(xt) of a trace (x0, . . . ,xT), T steps ahead,
where π is a continuous function approximated by π̃, using some set of parame-
ters ψ.

The state transition function can be learned as a GP, using available data,
going from a prior distribution of transition functions to a posterior one [15]. The
learned transition model can then be used to simulate the system and speculate
about the long-term behavior without the need of interaction (batch learning).
The policy is then optimized according to these simulations and then used to
get more tuples (state, action, successor state).

Qualitative Transfer for Reinforcement Learning 201

3 Qualitative Transfer Learning

The problem that we study is one where the source and target tasks have the
same state variables and are variants of the same task. For instance, the source
task could be to learn how to drive a car while the target task could be to learn
how to drive a small truck. We expect, that at least “qualitatively”, the behavior
of both task should be the same. Following these ideas, we transfer information
from the hyper-parameters of the transition function of the source task to the
target task. With the samples from the source task, we learn the state transition
function using GPs with a squared exponential kernel k as defined in the previous
section.

In GP learning however, when no expert knowledge is available about the
function properties, kernel hyper-parameters are often adjusted taking data into
account and optimizing the logmarginal likelihood (see [15] for more detail). That
is the case of PILCO [2], where hyper-parameters are adjusted each time new
data is added. Hyper-parameters are learned given the tuples X̃ = [x̃1, . . . , x̃n]
and their corresponding y = [∆1, . . . ,∆n] acquired during the interaction with
the environment.

In our approach, we do not let the evidence maximization process to take
control of the hyper-parameters values in the target task, instead, we adjust the
hyper-parameters using a forgetting factor. Let θ = [α2, ',σ2

ε]
denote the vector

of hyper-parameters. Let θ(s) denote the hyper-parameters transferred from the
source task, θi the hyper-parameters used in the kernel for the target task at

episode i, θ(p)i the hyper-parameters learned by evidence maximization in target
task at episode i. We calculate the values of the hyper-parameters in the target
task as follows:

θ0 = θ(s) (3)

θi = γθi−1 + (1− γ)θ(p)i , i > 0 (4)

where γ ∈ [0, 1] is the ratio in which previous episode hyper-parameters are
being incorporated into the kernel function.

Interaction with the environment when it is completely unknown requires an
exploration phase where actions are chosen randomly. However, it is reasonable
to believe that more accurate action heuristics exist when one has already learned
a policy in a related task. For this reason, we also transfer the learned policy
function from the source task and use it only in the first interaction with the
environment for the target task.

4 Experiments

In this section we show experimental results in the well known inverted-pendulum
task, commonly used as benchmark to compare reinforcement learning algo-
rithms. We compare the performance of the proposed learning approach, QTL-
PILCO, against PILCO [2] under different conditions.

202 E.O. Garcia, E. Munoz de Cote, and E.F. Morales

Algorithm 1. Qualitative Transfer Learning

Require: θ(s), ψ(s)

1: π̃ ← π(ψ(s))
2: θ ← θ(s)

3: Interact with environment, apply π̃ to obtain tuples.
4: repeat
5: Infer transition function distribution f from tuples and hyper-parameters θ.
6: repeat
7: Evaluate policy π̃ over f . Get V π̃

8: Improve π̃ $ Updating parameters ψ
9: until convergence
10: π̃ ← π(ψ)
11: Interact with environment, apply π̃ to obtain more tuples.
12: Learn θ(p) from all tuples.
13: θ ← γθ + (1− γ)θ(p)
14: until task learned

In the experiments, an inverted pendulum has to be swung up and then bal-
anced. The pendulum is attached to a cart that moves along one axis when
an external force is applied (action). The inverted pendulum problem involves
applying actions that temporarily move the pendulum away from the target
state, and the agent has to apply two different control criteria, one to swing the
pendulum up and the other to balance it, thus it is non trivial to solve.

In the continuous scenario, a state x is represented by the position x of the
cart, its velocity ẋ, the angle θ of the pendulum, and its angular velocity θ̇.
The cost function is expressed as c(x) = 1 − exp(− 1

2a × d2), where a is a
scale constant of the cost function (set to 0.25 in the experiments) and d is
the Euclidean distance between the current and desired states, expressed as
d (x,xtarget)

2 = x2 + 2xl sin θ + 2l2 + 2l2 cos θ. In the current setup, the reward
remains close to zero if the distance of the pendulum tip to the target is greater
than l = 0.6m.

The source task consists of swinging a pendulum of mass 0.5 Kg. while in the
target tasks the pendulums weights are changed to 0.8, 1.0, 1.5, and 2.0 Kg., re-
spectively. Even when tasks have the same state and action spaces, their dynamics
vary significantly and transferring the learned policy from the source task does not
improve over learning from scratch and may even lead to negative transfer.

In our experiments, the source task was learned using PILCO. From that
learning process, we transferred the hyper-parameters of the transition function
and used the policy function for the first trial of the target task.

We repeated the procedure 5 times, randomly drawing the initial state x ∼
N (µs0,Σ0), the learning curves were averaged and plotted with their corre-
sponding standard deviation. For PILCO, the Kernel hyper-parameters in the
source task were initialized with heuristic values, as proposed in [2]. The initial
training set for the transition function was generated by applying actions drawn
uniformly from [−amax, amax]. For policy transfer, the whole policy learned in
the source task was used as initial policy in the target task instead of a random

Qualitative Transfer for Reinforcement Learning 203

policy to obtain initial samples, followed by QTL-PILCO (see Algorithm 1) to
refine the policy.

In our proposed methodology, 8 hyper-parameters for each of the kernels Ki,
are taken from the source task, so 32 free variables are considered (considering
the four variables for this domain). Those hyper-parameters are used as initial
ones in the target tasks, and after the first episode, they are updated via evidence
maximization from the samples and a weighted history of the original values, as
described in Eq. 4. We performed experiments with different values for γ, from
γ = 0, which is equivalent to learning with PILCO, to γ = 0.9 which provides
more “inertia” to the hyper-parameters found in the source task.

A comparison of the learning curves for target tasks is showed in Figure 1,
where we plot PILCO and QTL-PILCO with different values of γ. The horizontal
axis shows the number of episodes (interactions with the environment) while the
vertical axis shows the total reward, which is computed as the cumulative count
of 1− c(x) at every step.

2 4 6 8 10 12 14
0

10

20

30

40

50

60

Episodes

To
ta

lr
ew

ar
d

PILCO
QTL−PILCO (gamma 0.9)
QTL−PILCO (gamma 0.5)
QTL−PILCO (gamma 0.1)

(a) Mass 0.8

2 4 6 8 10 12 14
0

10

20

30

40

50

60

Episodes

To
ta

lr
ew

ar
d

 PILCO
QTL−PILCO (gamma 0.9)
QTL−PILCO (gamma 0.5)
QTL−PILCO (gamma 0.1)

(b) Mass 1.0

2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

Episodes

To
ta

lr
ew

ar
d

 PILCO
QTL−PILCO (gamma 0.9)
QTL−PILCO (gamma 0.5)
QTL−PILCO (gamma 0.1)

(c) Mass 1.5

5 10 15 20 25
0

10

20

30

40

50

60

Episodes

To
ta

lr
ew

ar
d

 PILCO
QTL−PILCO (gamma 0.9)
QTL−PILCO (gamma 0.5)
QTL−PILCO (gamma 0.1)

(d) Mass 2.0

Fig. 1. Learning curves for target tasks 0.8Kg, 1.0Kg, 1.5Kg and 2.0Kg learned from
0.5Kg source task. Error bars represent ±1 standard deviation.

As can be appreciated from the figures, the proposed transfer learning ap-
proach can significantly reduce the learning process. When the target task is
quite similar to the source task (in this case, with a similar mass), QTL-PILCO
shows a clear improvement over learning without transfer. When the target task
is less similar (larger mass) the improvement is much more noticeable.

204 E.O. Garcia, E. Munoz de Cote, and E.F. Morales

The values of the hyper-parameters learned by evidence maximization can
change drastically during the first iterations of the learning process due to poor
samples. This is illustrated in the top graph of Figure 2(a). On the other hand,
it can be seen in the lower graph of this figure, that with QTL-PILCO the values
of the hyper-parameters are more stable and help to learn faster an adequate
policy.

2 4 6 8 10 12 14
−8

−6

−4

−2

0

2

4

6

8

Episodes

H
yp

er
−p

ar
am

et
er

 v
al

ue

(a) PILCO

2 4 6 8 10 12 14
−8

−6

−4

−2

0

2

4

6

8

Episodes

H
yp

er
−p

ar
am

et
er

 v
al

ue

(b) QTL-PILCO

Fig. 2. Hyper-parameters convergence for the 0.8 Kg. task. PILCO oscillates more
while QTL-PILCO leads to steadier values.

Our weighting technique provides a more suitable way to approximate target’s
hyper-parameters, provided that their values are expected to be not too different
from those of the source task. This significantly reduces the expected oscillations
that their values take with the initial trials and focuses the learning process in
finding a policy with good priors on the expected values of the hyper-parameters
of the transition function.

5 Conclusions

In this paper we have presented a transfer learning approach for reinforcement
learning with continuous state and action spaces. The proposed approach is
simple, yet very effective for transferring knowledge between related tasks. It
is based on two general ideas for transfer learning. The first one is based on
the idea that if you are going to transfer knowledge between similar tasks you
can expect them to have similar general behaviors. We implemented this idea
by starting with the hyper-parameters learned in the source task and gradually
incorporating information from the learned hyper-parameters of the target task.
The second idea is based on starting the new task with your “best guess”. In
this case, we used as starting policy the policy learned in the source task.

As future work, we would like to know the limits of our approach as the
source and target tasks become less similar. We would also like to explore how
to transfer knowledge from several source tasks. Finally, we would like to perform
experiments in other more challenging domains.

Acknowledgements. Work supported by CONACyT grant No. 51415.

Qualitative Transfer for Reinforcement Learning 205

References

1. Deisenroth, M.P., Peters, J., Rasmussen, C.E.: Approximate dynamic programming
with Gaussian processes. In: American Control Conference, pp. 4480–4485 (2008)

2. Deisenroth, M.P., Rasmussen, C.E.: PILCO: A Model-Based and Data-Efficient
Approach to Policy Search. In: ICML 2011, pp. 465–472 (2011)

3. Deisenroth, M.P., Rasmussen, C.E., Fox, D.: Learning to control a low-cost ma-
nipulator using data-efficient reinforcement learning. In: Proceedings of Robotics:
Science and Systems, Los Angeles, CA, USA (2011)

4. Deisenroth, M.P., Rasmussen, C.E., Peters, J.: Model-based reinforcement learning
with continuous states and actions. In: 16th European Symposium on Artificial
Neural Networks, pp. 19–24 (April 2008)

5. Engel, Y., Mannor, S., Meir, R.: Bayes meets Bellman: The Gaussian process ap-
proach to temporal difference learning. ICML 20(1), 154 (2003)

6. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with Gaussian processes.
In: ICML 2005, pp. 201–208 (2005)

7. Hasselt, H.V.: Insights in Reinforcement Learning Formal analysis and empirical
evaluation of temporal-difference learning algorithms (2011)

8. Hasselt, H.V.: Reinforcement Learning in Continuous State and Action Spaces. In:
Reinforcement Learning: State of the Art (2011)

9. Lazaric, A., Restelli, M., Bonarini, A.: Reinforcement learning in continuous action
spaces through sequential monte carlo methods. In: Advances in Neural Informa-
tion Processing Systems (2007)

10. Lazaric, A., Restelli, M., Bonarini, A.: Transfer of samples in batch reinforcement
learning. In: Proceedings of the 25th International Conference on Machine Learn-
ing, ICML 2008, pp. 544–551 (2008)

11. Mart́ın, J.A., de Lope, H.J., Maravall, D.: Robust high performance reinforcement
learning through weighted k-nearest neighbors. Neurocomputing 74(8), 1251–1259
(2011)

12. Murray-Smith, R., Sbarbaro, D.: Nonlinear adaptive control using non-parametric
Gaussian process prior models. In: 15TH IFAC, pp. 21–26 (July 2002)

13. Rasmussen, C.E., Deisenroth, M.P.: Probabilistic inference for fast learning in con-
trol. In: Girgin, S., Loth, M., Munos, R., Preux, P., Ryabko, D. (eds.) EWRL 2008.
LNCS (LNAI), vol. 5323, pp. 229–242. Springer, Heidelberg (2008)

14. Rasmussen, C.E., Kuss, M.: Gaussian Processes in Reinforcement Learning. Ad-
vances in Neural Information Processing Systems 16, 16 (2004)

15. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. Inter-
national Journal of Neural Systems 14(2), 69–106 (2006)

16. Sutton, R., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press (1998)
17. Taylor, M.E., Jong, N.K., Stone, P.: Transferring Instances for Model-Based Rein-

forcement Learning. Machine Learning (September 2008)
18. Taylor, M.E., Stone, P.: Transfer Learning for Reinforcement Learning Domains:

A Survey. Journal of Machine Learning Research 10, 1633–1685 (2009)

