
Solving Policy Conflicts between Markov Decision Processes

Abstract
Markov decision processes (MDPs) normally execute
a single action per state; however, in many domains
such as robotics, it is sometimes necessary to execute
multiple actions at the same time. We have worked on
a novel framework based on functional decomposition
that divides a complex MDP into several sub-problems.
Each sub-problem is defined as an MDP and solved in-
dependently, and their individual policies are combined
to obtain a global policy. This combined policy can ex-
ecute several actions per state but can introduce policy
conflicts. We define two kinds of conflicts, resource
and behavior conflicts, and propose solutions for both.
The first kind of conflict is solved off-line using a two
phase process which guarantees a near-optimal global
policy. Behavior conflicts are solved on-line based on a
set of restrictions specified by the user. If there are no
restrictions, all the actions are executed concurrently;
otherwise, a constraint satisfaction module selects the
action set with higher expected utility. The use of con-
straints can generate different behaviors, according to
a set of user-defined restrictions. Experimental results
in a robotics domain show that our approach produces
a more efficient solution when several actions can be
concurrently executed.

Introduction
The main drawback of MDPs is due to the curse of dimen-
sionality. In its basic form, policy and value iteration require
an explicit representation of states and actions and need to
explore the entire state space during each iteration. In par-
ticular, if multiple concurrent actions are allowed, this will
imply a further increase in complexity, as all actions combi-
nations need to be considered.

To deal with the complexity problem there are three
main approaches: factorization, in which the state space
is represented in a factored form (e.g. (Boutilier, Dear-
den, and Goldszmidt 1995; Hoey et al. 1999)); decompo-
sition, that divides the global problem into smaller prob-
lems that are solved independently and their solutions are
combined (e.g. (Meuleau et al. 1998; Laroche, Boni-
face, and Schott 2001)); and abstraction, that creates an ab-
stract model where states with similar features are grouped

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

together(e.g. (Parr and Russell 1997; Dietterich 1998;
Jong and Stone 2005; Li, Walsh, and Littman 2006; Dean
and Givan 1997)). Next we describe each alternative.

Factored MDPs Factored MDPs address the complexity
problem via compactly specifying the model of the MDP
in factored form; the state space (S) is modeled by a set
of variables X = X1, .., Xn, and the actions are described
as having an effect on specific variables under certain con-
ditions, implicitly inducing the transition function.For in-
stance, (Boutilier, Dearden, and Goldszmidt 1995) uses a
two − slide temporal Bayesian network (TBN) (Tawfik
and Neufeld 1994) to represent it, algorithm retains the ba-
sic steps of PI but it exploits the independencies reflected in
the TBN. SPUDD (Hoey et al. 1999) uses algebraic decision
diagrams (ADDs) (Bahar et al. 1997) to represent the transi-
tion and value functions, and based on this representation it
uses very efficient techniques for ADDs to implement value
iteration. Although factored representations allow to solve
quite large MDPs, they do not address directly the problem
of concurrent actions.

Abstraction Under the abstraction approach, a group of
states in the original MDP is mapped to a single abstract
state. For this, the group of states must be equivalent, or at
least share the same local behavior. For instance, (Jong and
Stone 2005) is an approach that discovers a set of state vari-
ables that are irrelevant for a policy, finds the states where
this set of variables is irrelevant, and encapsulates them
into one state using temporal abstraction. Hierarchical ab-
stract machines (HAMs) (Parr and Russell 1997) consist
of non−deterministic finite state machines whose transition
may invoke other lower level machines. These approaches
also do not solve the issue of concurrent actions.

Decomposition Decomposition is based on the old prin-
ciple of divide and conquer. In (Meuleau et al. 1998) the
problem is divided into smaller tasks. In an off–line phase,
the value function and optimal policy for the MDP asso-
ciated to each subtask is computed. In an on–line phase,
these value functions are used within a heuristic search pro-
cedure to assign resources to each task, and depending on
the resources allocated, the action to execute is selected. In
(Laroche, Boniface, and Schott 2001) the state space is di-
vided into physical regions (office, corridor, room, etc.), and



each one is solved as an MDP. The regions have communi-
cation with their neighbors through an state (initial or goal)
called intersection. Then a directed graph is built, where
each intersection is a vertex and the regions are the arcs.
Each arc is associated to the value function of its respective
MDP, and to get a solution the shortest path is found. In
(Dietterich 2000), the MDP is divided into several subtasks,
identifying a subset of state variables which are relevant for
each subtask. It then defines a value function and policy us-
ing only these relevant variables for each task.

Most decomposition approaches make a serial decompo-
sition; that is, the problem is partitioned in subtasks that
are executed sequentially. These techniques can not ex-
ecute concurrent actions. There are few previous work
on parallel decomposition (e.g. (Meuleau et al. 1998;
Sucar 2007)), where the subtasks are executed concurrently,
so in principle they can execute several actions simultane-
ously. Elinas et al. (Elinas et al. 2004) propose an approach
for coordinating a service robot based on concurrent MDPs,
assuming the subtasks are independent and that there are no
conflicts between actions. Parallel MDPs (Sucar 2007) con-
sider the combination of local policies based on Q values,
however this combination may result in undesirable behav-
ior in some states, which correspond to conflicts between the
local policies. The previous approaches in general assume
that the subtasks are independent and they do not consider
potential conflicts between the policies of each subtask. In
this paper we address these problems. The rest of the paper
is structured as follows. We first present the proposed ar-
chitecture and describe the techniques for solving conflicts.
Finally, we describe the experimental evaluations and con-
clude with directions for future work.

General architecture
Our work is motivated by robotics, specially by service
robots, where frequently it is necessary to simultaneously
perform multiple tasks to accomplish certain goal. We pro-
pose a framework for solving this type of problems based on
MDPs. It considers four main phases:

1. Decompose the problem into several subtasks based on
functionally.

2. Solve each MDP independently considering the global
objective of the subtask.

3. Combine the local policies and solve resource conflicts.
Define restrictions for the behavior conflicts.

4. Execute the local policies in parallel, solving behavior
conflicts on–line based on the set of restrictions.

Figure 1 shows the main phases of the proposed solution.
Next we describe each phase in more detail.

Functional decomposition
Our focus is on functional design –the process of breaking
a system into interacting subcomponents based on function-
ality. Each function contributes to a common objective. All
these functions are running at the same time focusing on a
particular objective, and at the same time they all contribute
to the global goal. In the first phase the global problem is

Figure 1: The general architecture is composed by four
phases: (a) functional decomposition; (b) definition and so-
lution of the subMDPs; (c) detection of conflicts between
local solutions and combination; and (d) execution of the
global solution.

divided in k functions. Each function has its own objective,
and it is modeled as an factored MDP, named subMDP .
The subMDPs are solved independently to obtain their
value function (V ∗

j ) and their optimal policy (π∗j ). In our
current implementation we use SPUDD (Hoey et al. 1999)
to solve each subMDPs. Once the local policies for all
the subMDP are obtained, their solutions are combined to
obtain a global policy. More details on (ecx ).

Solving policy conflicts
Once the subMDP for each subtask is solved, in princi-
ple their policies can be executed simultaneously to solve
the global problem. That is, at each time state (si), each
subMDP selects an action to execute according to its local
optimal policy: π∗1(si) = a1, π∗2(si) = a2, ..., π∗k(si) = ak.
This set of actions are denoted by Asi

= {a1, a2, ..., ak}.
When these policies are combined conflicts between them
can arise. We have identified two types of conflicts when
two or more actions are executed at the same time: Resource
conflicts, and Behavior conflicts. .

(i) Resource conflicts This type of conflict arises when
two or more actions requires the same resource, so it is im-
possible to execute them at the same time. For example,
suppose that a robot is on track to deliver an urgent message,
but the battery is running low. In this state, the navigation
function may want to turn left to reach the target point, while
the energy function may want to turn right to recharge the
battery. This type of conflicts are solved off–line via a two-
phase process.

First, an initial global policy is obtained by combining
the local policies, such that if there is a conflict between the
actions selected by each subMDP for certain state (si), the
action with maximum value is considered, and the state is
marked as a conflict state. The previous policy is the initial
policy, and considers only the states marked as conflicts to
improve the initial policy, using a modified policy iteration
algorithm. With these considerations the time complexity is
drastically reduced. In this case no simultaneous actions are
allowed. See (ecx ) for details.



(ii) Behavior conflicts When two or more subMDPs re-
quire different resources, to execute their actions, but if the
actions are executed at the same time the system results in
an undesirable behavior, we say that a behaviour conflict is
present. To solve this type of conflicts we also consider two
steps:(i) define restrictions (off–line); and (ii) execute con-
current actions (on–line).

Definition of Restrictions
The user establishes a restrictions set (RS) in terms of ac-
tions, from different subMDPs, that should not be executed
at the same time. We have defined a syntax for it. We con-
sider that given a functional decomposition of the problem
and domain knowledge, it is relatively easy for a person to
specify these restrictions. For example, in the robotics do-
main, imagine that the robot is interacting with a user, while
the navigation module is trying to evade an obstacle (in this
case the same person). Therefore these two actions should
not run at the same time, and the system must choose which
one to run first, based on the RS.

The system has to maintain the Markov property, it means
that future behavior depends only on the current state, not on
the state(s) in the past. So, on each time state (si) the systen
only knows the current action of each subMDPs (Asi ), and
the actions that are running(Esi ). So, we have defined four
kinds of restriction operators:

1. ai not start aj . The actions ai and aj must not start at
the same state.

2. ai not before aj . The action ai must not start before aj .

3. ai not after aj . The action ai must not start after aj .

4. ai not during aj . If the action aj is running ai must not
start .

Conjuntion (AND), and disjunction (OR) of actions are
allowed (e.g. interact whit user AND recognize user
not during robot turnning).

Concurrent Actions
Once the RS is defined, and the optimal policies are obtained
for all subMDPs, the system runs the k subMDPs simul-
taneously. At each time state (si), the agent consults each
optimal policy (π∗i ) of the k subMDPs. If there are no
restrictions between the actions for all subMDPs, all ac-
tions are performed concurrently. Otherwise, we solve the
problem of selecting the actions via a constraint satisfaction
module (CSM).

The constraint handling rules (CHR) library of SICStus
prolog was used to built the CSM that finds the actions set to
be executed in this time state (A

′

si
), based on the RS defined

by the user.
The action of each subMDP (Asi ) and the actions that

are running (Esi ), and the value functions of both are the
input of the CSM. We define a data type actions, the terms
acepted are the actions of all subMDPs; the RS defined
by the user is coded as predicates into a .pl file. A set of
rules determinates the action(s) set(s) that satisfy the RS,
(Asc1 , Asc2 , ..., Ascm

,m >= 1). Finally the CSM module

Figure 2: Sequential actions solution needs more time states
to get a goal.

calculates the actions set that maximizes the expected re-
ward (A

′

si
= maxAV (Ascj )) and the actions ofA

′

si
are sent

to their respective subMDP to be executed concurrently.
Experimental results in a robotics domain are showed in the
next section.

Experimental results
This work is motivated by robotics, in particular service
robots. We present two sets of experiments, with concur-
rent actions: (i) hot & cold game, without conflicts; and (ii)
robot in a message delivery task, with behavior conflicts.

Hot & Cold game: concurrent actions without
conflicts
To test our approach we consider a hot & cold game. In this
test we show that our approach produces a more efficient
solution when several actions can be concurrently executed.
For this task the robot knows one or more objects. One of
these objects is hidden somewhere in the environment, next
the robot gets started with a key frase, for example: ”Robot,
find the <object>”. The robot has to navigate (navigation)
around the escenary to find the object, while searching (vi-
sion) the user gives hints to the robot via voice (interaction),
such as: hot or warm, or cold as the robot gets closer or
farther from the object until it is identified. The robot may
ask for a hint. For this task it is considered that the robot
has a 2D map of the environment and laser and sonar sen-
sors, a camera PTZ, headers and microphone. We break hot
& cold game into three interacting subcomponents based
on functionality. On subtask (navigation) the robot navi-
gates around the scenary safely, avoiding obstacles in the
trajectory of the robot. A second function (vision), the robot
moves the camera looking for an object. And finaly the thrid
subtask (interaction), the robot remains on hold listening for
an order or hint, or asks for a hint to the user, if necesary.

On figure we can see that only one action is executed
by time state, if we can execute concurrent actions under
this focus we need to define each action as a set of actions,
but this increases significantly the size of the model, and it
makes more complex its specification. Our approach allows
execute concurrent actions, see figure , and gets the goal an
less steps.



Figure 3: Our approach produces a more efficient solution
when concurrent actions can be executed.

Figure 4: Messenger robot task, without restriction.

Messenger robot: concurrent actions with
behaviour conflicts

The objective of this experiments is to test the approach, in
particular evaluate the CSM under the RS for solving be-
haviour conflicts, and execute concurrent actions. The goal
in this task is to receive and deliver a message, an object or
both, under user request. The interaction again is through
natural language. The user gives an order to send a mes-
sage/object and the robot asks for the name of the sender
and the receiver. The robot either records a message or uses
its gripper to hold and object,and navigates to the receiver’s
place and deliver the message/object. The user has the ha-
bility to express its emotions according its state. We break
the task in five subMDPs: (i) navigation, the robot navi-
gates safely on different scenarios; (ii) vision, for looking
and recognizing people and objects; (iii) interaction, to lis-
tening and talking with a user; (iv) manipulation, to get and
deliver an object safely; and (v) expresion, during the task
an animated face expresses the robot emotions. We present
three cases: (1) without restrictions, and (2) restrictions be-
tween all subMDPs.
No restrictions On principle, all actions can be executed
concurrently, but as shown in figure 4 the robot incurrs in
undesirables behaviours. For example vision can not get a
good image to analyze and recognize the user (see the time
states from s2 to s12), because navigation is moving while
the robot is trying to avoid the user. So, the user has to be
catched the microphone to interact. When the vision mod-
ule detects a person, (s3, s7, and s11), the robot does not
knowns who is, in the time states s4, s8, and s12 vision and
interaction subMDPs try to identificate who is, if the user
is already know, results inappropiate ask for his name again
and again.

Table 1: Restriction set RS for messenger robot

action(s) restriction action(s)
get message not during turn OR advance
ask user name not before recognize user
recognize user not start avoid obstacle
get object directed towards
OR not during OR turn
deliver object OR moving

Figure 5: The bahviour

Restrictions actions between the k subMDPs Table 1
lists some restrictions introduced for this test, to avoid the
problems mentioned in the previous section. Figure 5 shows
that vision subMDP has a better performance than when
no restrictions. In only two states, s3 and s4, the robot is
able to detect and recognize the user. So, like the user de-
tected is already know, the action determinated by interac-
tion subMDP (ask user name) on time state s4 is elimi-
nated by the CSM module. In the same behaviour conflict
(s25), but when the user is not knows by the robot, the action
(ask user name) is executed after recognition (s26). At the
same time when the vision or interaction subMDPs exe-
cute some action the CSM module eliminates the navigation
actions if these afect their performance.

We may also note that more tasks can be performed in less
time states.

Conclusions and Future Directions
We have presented a framework for solving complex
Markov decision processes based on functional decomposi-
tion which partitions the problem in several simpler MDPs.
We obtain the optimal policy for each subMDP , and then
combine the results to obtain a global solution such that the
actions of each subMDP are executed concurrently. We
have identified two types of conflicts: resource and behav-
ior conflicts. For resource conflicts the local policies are
combined to obtain an initial policy which is refined using
a modified policy interaction algorithm. For behavior con-
flicts we have defined a syntax to specify a restrictions set
(RS) between actions to identified conflicts; and the action
set with highest expected value (A

′

si
) is selected by the con-

straint solver module (CSM). Experiments show the feasi-
bility of the proposed approach.

We are currently testing our approach in a more complex



experiment. The global problem has a larger state space,
including more functions thus increasing the conflicts be-
tween local policies. The objective of the messenger robot,
is to pickup and deliver more than one object or message
between users in an office environment. The system has to
plan a delivery schedule. While the robot is delivering, it
can also guide a visitor to a particular office. For these new
experiments we are adding more actions to: (i) navigation,
(ii) vision, and (iii) interaction; we are combining one more
subMDP : schedule. We are also working on a more formal
analysis of the optimality of the proposed approach.

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebraic
decision diagrams and their applications. Formal Methods
in System Design 10(2/3):171–206.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. In IJCAI, 1104–
1113.
Dean, T., and Givan, R. 1997. Model minimization in
markov decision processes. In AAAI/IAAI, 106–111.
Dietterich, T. G. 1998. The maxq method for hierarchical
reinforcement learning. In ICML, 118–126.
Dietterich, T. G. 2000. Hierarchical reinforcement learn-
ing with the maxq value function decomposition. J. Artif.
Intell. Res. (JAIR) 13:227–303.

Elinas, P.; Sucar, E.; Reyes, A.; and Hoey, J. 2004. A
decision theoretic approach for task coordination in social
robots. In 13th IEEE International Workshop on Robot and
Human Interactive Communication.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In
Canadian Conference on AI, 279 – 288.
Jong, N. K., and Stone, P. 2005. State abstraction dis-
covery from irrelevant state variables. In Proceedings of
the Nineteenth International Joint Conference on Artificial
Intelligence, 752–757.
Laroche, P.; Boniface, Y.; and Schott, R. 2001. A new
decomposition technique for solving markov decision pro-
cesses. In SAC, 12–16.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. In Ninth Inter-
national Symposium on Artificial Intelligence and Mathe-
matics, 21–30.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.;
Kaelbling, L. P.; Dean, T.; and Boutilier, C. 1998. Solving
very large weakly coupled markov decision processes. In
AAAI/IAAI, 165–172.
Parr, R., and Russell, S. J. 1997. Reinforcement learning
with hierarchies of machines. In NIPS.
Sucar, L. E. 2007. Parallel markov decision processes.
Studies in Fuzziness and Soft Computing, Advances in
Probabilistic Graphical Models 214/2007:295 – 309.

Tawfik, A. Y., and Neufeld, E. 1994. Temporal bayesian
networks. In TIME, 85–92.


