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Abstract: Autonomous learning of objects using visual informatiomigportant to robotics as it can be used for local
and global localization problems, and for service task$ sigsearching for objects in unknown places. In
a robot team, the learning process can be distributed antdrais to reduce training time and produce more
accurate models. This paper introduces a new learning Wwankevhere individual representations of objects
are learned on-line by a robot team while traversing an enmient without prior knowledge on the number
or nature of the objects to learn. Individual concepts asgedhamong robots to improve their own concepts,
combining information from other robots that saw the samjeaiband to acquire a new representation of an
object not seen by the robot. Since the robots do not knowvarad how many objects they will encounter,
they need to decide whether they are seeing a new object oovankabject. Objects are characterized by
local and global features and a Bayesian approach is useghibice them, and to recognize objects. We
empirically evaluated our approach with a real world roleainh with very promising results.

1 INTRODUCTION to their capability for accelerated learning, learning
robot teams can be used to acquire a much richer and

The design of robot teams is a very active research do-varied information compared to the information ac-

main in the mobile robotics community. Robot teams Aduired by single learning robots.
have effectively emerged as an alternative paradigm  Learning is a key issue to achieve autonomy for
for the design and control of robotic systems becauseboth, single robot and robot teams. Learning capa-
of the team’s capability to exploit redundancy in sen- bilities can provide robots flexibility and adaptation
sing and actuation. needed to cope with complex situations. In the con-
The research on robot teams has focused on de-text of robot teams, the most common machine learn-
veloping mechanisms that enable autonomous robotsing approach has been reinforcement learning, where
to perform collective tasks, such as strategies for co- the idea is to learn optimal policies using a set of
ordination and communication (Asada et al., 1994; robots to improve the coordination of individual ac-
Matari¢, 1997); exploration, mapping and deploy- tions in order to reach common goals (Asada et al.,
ment (Howard et al., 2006); sensing, survillance and 1994; Mataric, 1997; Parker, 2002; Fernandez et al.,
monitoring (Parker, 2002); and decentralized decision 2005).
making (Wessnitzer and Melhuish, 2003). In these  In this work we use visual information to learn,
works, a robot team can reduce time to complete a with a team of robots, descriptions of objects placed
complex task that is allocated among its members.  in a particular environment. Learning to recognize
Despite constant research on the design of robot particular objects in an environment is important for
teams, very little attention has been paid so far to the robotics as it can be used for local and global local-
development of robot teams capable of learning from ization tasks as well as for simple service tasks such
their interaction with their environment. In addition as searching for objects in unknown places. Contrary



to previous approaches, in our learning setting, the navigates in a domestic environment, builds a map,
robots are not told the number or nature of the objects localizes its position in the map, recognizes objects
to be learned. and locates them in the map. Background sub-
Vision is a primary source of perception in traction techniques are applied for foreground ob-
robotics and provides different features that can be jects segmentation. Then objects are represented
used to classify objects. In general, using a particu- by SIFT points (Lowe, 2004) and an appearance-
lar set of features can be adequate for particular tasksbased method for detecting objects named Receptive
but inadequate for other tasks. In this work, objects Field Co-occurrence Histograms (Ekvall and Kragic,
are characterized by two complementary features: (i) 2005). The authors developed a method for active ob-
SIFT features (Lowe, 2004) and (ii) information about ject recognition which integrates both local and global
the silhouettes of objects. Other features could be information of objects.
used as well, but the main objective in this work is to In the work of Mitri et al. (2004), a scheme for
show the different cases and possible confusions thatfast color invariant ball detection in the RoboCup con-
can arise in the recognition of objects and merging of text is presented. To ensure the color-invariance of
concepts, and how they can be addressed. the inputimages, a preprocessing stage is first applied
Numerous difficulties arise in robot teams when for detecting edges using the Sobel filter, and specific
learning as well as sharing concepts that representthresholds for color removal. Then, windows are ex-
concrete objects. Some of these issues are discussegtacted from images and predefined spatial features
by Ye and Tostsos (1996) and include, how do robots such as edges and lines are identified in these win-
represent their local views of the world, how is the dows. These features serve as input to an AdaBoost
local knowledge updated as a consequence of thelearning procedure that constructs a cascade of clas-
robot’s own action, how do robots represent the local sification and regression trees (CARTs). The sys-
views of other robots, and how do they organize the tem is capable of detecting different soccer balls in
knowledge about themselves and about other robotsRoboCup and other environments. The resulting ap-
such that new facts can be easily integrated into the proach is reliable and fast enough to classify objects
representation. This article addresses the individual in real time.
and collective representation of objects from visual Concerning the problem of collective learning of
information using a team of autonomous robots. objects using robot teams there are, as far as we know,
~ Therest of the paper is organized as follows. Sec- \gry few works. Montesano and Montano (2003) ad-
tion 2 reviews related work. Sections 3y 4 describe, yyess the problem of mobile object recognition based
respectively, the stages of individual learmning and col- o kinematic information. The basic idea is that if
lective learning of concepts. Section 5 describes our he same object is being tracked by two different
experimental results, and Section 6 provides conclu- ropots; the trajectories and therefore the kinematic in-
sions and future research work. formation observed by each robot must be compati-
ble. Therefore, location and velocities of moving ob-
jects are the features used for object recognition in-
2 RELATED WORK stead of features such as color, texture, shape and size,
more appropriate for static object recognition. Robots

Interesting experiments where physical mobile robots Puild maps containing the relative position of moving
learn to recognize objects from visual information OPi€Cts and their velocity at a given time. A Bayesian

have been reported. First we review significant work PProach is then applied to relate the multiple views
developed for individual learning, and then we review ©f @n object acquired by the robots.
learning approaches developed for robot teams. In the work of O'Beirne and Schukat (2004), ob-
Steels and Kaplan (2001) applied an instance- jects are represented with Principal Components (PC)
based method to train a robot for object recognition learned from a set of global features extracted from
purposes. In this work objects are represented byimages of objects. An object is first segmented and
color histograms. Once different representations haveits global features such as color, texture, and shape are
been learned from different views of the same object, then extracted. Successive images in a sequence are
the recognition is performed by classifying new views related to the same object by applying a Kalman fil-
of objects using the KNN algorithm (Mitchell, 1997). ter. Finally, a 3D reconstructed model of an object is
Ekvall et al. (2006) used different learning tech- obtained from the multiple views acquired by robots.
niques to acquire automatically semantic and spatial FOr that purpose, a Shape From Silhouette based tech-
information of the environmentin a service robot sce- Nique (Cheung et al., 2003) is applied.
nario. In this work, a mobile robot autonomously In contrast to previous works, in our method each



the number or nature of the objects to learn. Indi-
vidual concepts are represented as a combination of
global and local features extracted autonomously by @ ®) ©
the robots from the training objects. A Bayesian ap-

proach is used to combine these features and used foFigure 1: Examples of the silhouette (b) and average silhou-
classification. Individual concepts are shared among ette (c) of an object (a).

robots to improve their own concepts, combining in-
formation from other robots that saw the same object,
and to acquire a new representation of an unnoticed
object.

member of the robot team learns on-line individual @&
representations of objects without prior knowledge on -
&)

3 INDIVIDUAL LEARNING OF

Figure 2: Examples of the SIFT features extracted from a
CONCEPTS set of images and the final set of SIFT features.

The individual concepts are learned on-line by a robot
team while traversing an environment without prior

knowledge on the number or nature of the objects to
learn. The individual learning of concepts consists

Training using global features: We applied Princi-
pal Component Analysis (PCA) over the average sil-
S : ; houettes that are automatically extracted from the set
.Of tree parts: quect detection, feature extraction and of images of a particular object. The average pro-
'nd'V'd_lJ"_jll training. _ vides a more compact representation of objects and
Individual concepts of objects are represented by (oq,ces segmentation errors. Figure 1 (a) shows an
Principal Component (PC) over the information about object used in the training phase, Figure 1 (b) shows
the silhouettes of objects and Scale Invariant Features;;g silhouette, and Figure 1 (c) illustrates the average
(SIFT). Learned concepts are shared among robots. gjhqette obtained from a set of images that represent
the object of Figure 1 (a). Once the robot has obtained
3.1 Object Detection an average silhouette, this is added by the robot to a
set of known average silhouettes. After that, the robot

Robots move through an environment and learn des-US€S PCA to reduce the dimensionality of all average
criptions of objects that they encountered during na- silhouettes learned to get the PC features that repre-
vigation. Objects are detected using background Sents them.

substraction. In this paper we assume a uniform and 1raining using local features: Each robot extracts
static background. We performed morphological o- l0cal SIFT features of each image of the set of im-
perations (closing - errode) to achieve better segmen-2des, and groups them in a final set which contains all
tation. Once an object is detected, it is segmented angthe different SIFT features that represent an object.

scaled to a fixed size, to make the global PC features!n Figure 2 we show an example of the SIFT points
robust to changes in scale and position. obtained from a set of images ofvaseand the final

set of SIFT points obtained. The PC features and the
SIFT features represent the individual concept of the

3.2 Feature Extraction and Individual observed object.

Training
3.3 SHARING CONCEPTS

The segmented objects are grouped autonomously by
the robots in sets of images containing the same ob-The concepts learned by robots are shared among
ject. Robots assume that they are observing to thethem to achieve collective learning. This can be done
same object while it can be detected, and they finish off-line or on-line. In the case of collective off-line
to see it when they can not detect objects in the cap-learning the robots share their individual concepts
tured images. Only one object can be detected in anonce they have learned all the training objects. On
image at the same time. For each set of images, thethe other hand, in the collective on-line learning the
robot obtains an individual concept that represents therobots share their individual concept as soon as a hew
object. object is learned.



4 COLLECTIVE LEARNING OF
CONCEPTS

Collective learning of concepts enables robots to

improve individual concepts combining information

from other robots that saw the same object, and to ac-
quire a new representation of an object not seen by the
robot. Therefore, a robot can learn to recognize more
objects of what it saw and can improve their own con-

cepts with additional evidence from other robots.

) nEigens

df = Zx (matProysg ) — vectProys )2 (2)
r=

where nEigensis the number of eigenvectors used
during the PCA trainingr(Eigens= numOb j§— 1),
andl is the index of the distance vector, where the
maximum size of the vectaE' is numObjs.
- The distance valugE' is divided by a maximum dis-
tance valueT hresholdMax determined experimen-

A robot has to decide whether the concept shared a1y 1 obtain a similarity metric also called the pro-

by another robot is of a new object or of a previously

learned concept. A robot can face three possibilities:

coincident, complementary or confused information.

The shared concepts are fused depending on the kind

of information detected, as described below.
4.1 Pre-analysisof Individual Concepts
The concept learned by a robot is defined as follows:

Ci = {Sil, SIFT} (1)

whereC, is the concepk learned by robot, Sil, is
the average silhouette, a®IFT; is the set of SIFT
features that form the conceépt

In order to determine if a shared concept is pre-

viously known or not to a robot, it evaluates the pro-

bability vectorv,, as shown in formula 3.

: dE|
V=1 ThresholdMax ®)

If dE|i is bigger than th& hresholdMaxvalue, then
the probability will be fixed as shown in formula 4,
which indicates that the projections of the objgand
the one of the objedtare completely different.

1

Vh=——— 4
P humObjs “)

The value of the SIFT similarity metric also called
the probability vector SIFT at the positiov, is

obtained calculating the number of coincident SIFT,
Neoin, between the individual SIFT conceFT'
learned by robot, and the individual SIFT concept
SIF'I[(J shared by robojf. If the numbemc, is big-

ger than an average of coincidences determined ex-

babilities that the PC features and SIFT features areperimentally,AverageCointhen the probability will

previously known by the robot. The probability vec-
tors of PC features calculated by robiotvy, indi-

be fixed tov'81 = 1.0, which means that both concepts
contain the same local features SIFT. In other case,

cate the probability that a concept shared by robot the probability will be calculated using equation 5.

i ClJ( is similar to the concepts known by robiot

Ci,--»Chumonjs given the global featuresiumObjs

is the number of concepts of objects known by robot
i. The process to obtain the probability vector PC is

described as follows:
- A temporal training set of silhouettes is formed by

adding the average silhouettes of concepts known by

roboti or actual robotSil, ..., Sil and the a-

numoObjs.
verage silhouette of the shared concgit.

- The PCA s trained using the temporal set of average
silhouettes. The projection of the average silhouettes

know by robot is obtained as a matrix of projections,
matProys The projection of the average silhouette
Sil} is obtained in a vectovectProys

- The Euclidean distancelE) is calculated between
each vector of the matrimmatProysand the vector
vectProysas shown in formula 2, i.e, we obtain the

Ncoin
=— 5
S AverageCoin ®)
The constanAverageCoirrepresents the average
of coincidences between two sets of SIFT points of
the same object from different perspectives.

4.2 Analysisand Fusion of Individual
Concepts

This section describes how to detect if the shared con-
cept is coincident, complementary or confused, and
how the individual concepts are fused to form collec-
tive concepts depending on the kind of detected con-
cept.

4.2.1 Coincident Concepts

distance between all the projections already computedA coincident concept is detected when two or more

and the projection of the new silhouette.

robots of the robot team learned individual concepts



from similar views of the same object. A shared con- its local SIFT featuresSIFT,. Thatis, if\/"H > o and
cept is classified as coincidentif > a andvy > a. Vi < a.

That iS, if both prObab”itieS (PC and S”:T) of a pre- In both types of Confusion, type 1or type 2, there
viously learned concept are greater than a predefinedcan be two options:

threshold valued). If a shared concept is determined
as coincidentitis merged with the most similar known
concept as follows:

PCA fusion: It is obtained by evaluating a new a- b) Same object: Both concepts correspond to the
verage silhouette from the average of the kndih same object but they were learned by robots from

and newsil! silhouettes. After that, it is necessary to  different points of view.

re-train the PCA substituting the conc@jﬂ with the In our current approach, both types of confusions
new average silhouette which contains information of are solved as if it was a new object (complementary).
the concept learned by robpt The reason is that robotannot distinguish between
SIFT fusion: It is obtained by adding the comple- the two options (different objects or same object) us-
mentary SIFT points of conceﬂlFﬂ(’ to the set of ing only the individual_ and the_ shared concepts, be-
SIFT points of concepSIFT'. Also, each pair of ~ Cause it needs more information to solve the confu-
coincident SIFT points of both concepts is averaged Sion to decide if it is about the same object or if it
in terms of position and their corresponding SIFT des- IS @bout a new one. To solve the disambiguation, as

a) Different objects. Both concepts correspond to
different objects.

criptors. future work each robot should built autonomously a
The main idea to fuse individual concepts is to im- Map and locate its position in the map. In addition,
prove their representation. for each learned object, robots will locate them in the
map. If an object is confuse, a robot can move to the

4.2.2 Complementary Concepts position of the object marked in the map to see the ob-

_ ject from different perspectives in order to solve the
A conceptC}, contains complementary information ~conflict.
if it differs with all known concepts by robat i.e.,
if both shape and local features are different to all

known concepts by robatC;,...,C mopjs Thatis, 5 EXPERIMENTSAND RESULTS
if Vi, < o andvi < a.

A complementary Concerﬁi is fused with the  We performed several experiments to demonstrate the
collective concepts known by the rokias follows: proposed algorithm. In section 5.1, we show the re-
PCA fusion: The new average silhouette is added and Sults of a general experiment that demonstrates the
the new PC concepts are obtained by re-training the main features of the proposed approach. In section
PCA using the updated set of average silhouettes. ~ 5.2we presentthe accurracy of the collective concepts
SIFT fusion: The new SIFT features are simple Versus the individual concepts.
added to the current set of SIFT concepts known by  In these experiments we used a robot team of two

the robot. homogeneous Koala robots equipped with a video
camera of 32& 240 pixels. For more than two robots
4.2.3 Confused Concepts our method is applied strighforward. The only differ-

ence is that robots will perform the pre-analysis and
There are two types of confusion that can occur bet- the analysis and fusion of individual concepts for each
ween concepts: shared concept by the other members of the team.
Different shape and similar local features (type 1):
This type of confusion occurs when the new concept 5.1  Concept Acquisition and Testing
Cj is complementary by shapsjl!, to all the con-
cepts known by the robat 5i|i1,,__,5i|inum0b_é but The mobile robots learn on-line a representation for
j . . . .
it is coincident by local SIFT featureSIF T, with _several quects vyhﬂe following a predetermined tra-
at least one concept known by the roh')otThat is jectory WIthOUt- prior knowledge on _the numbe_ror na-
' ture of the objects to learn. The idea of using pre-

VI% 2 a and ifvp < o. planned trajectories instead of making the robots wan-
Similar shapeand different local features(type 2):  gering randomly, is that we can ensure that robots wil
This type of information occurs when concepf see an object at a time with its video camera, because
is coincident by shapéSili, to at least one concept it is an important point for the correct performance of
known by the robot, but it is complementary using our method. The pre-planned paths do not imply that



‘ ‘\, Table 1: Probability vectors P(S/&) obtained by R1.
¥ G v Q New (collective concepts R1)
(@ ﬁ ? i Objecty Dol-| Vase Can Soda Watef Bot; Co-
| h phin bot- | bot- | tle | ne
tle | tle
@ ® © @ @@ O @ s—r———r———————
Figure 3: Training objects. ajase b) water bottle c) can, phing
d) dolphin, e) soda bottlef) bottleand g)cone Vasey || 0.19| - - - - - -

Carr: || 0.31| 0.26 -
Soda || 0.36] 0.28 0.58 - - N N
bottlezy

robots are going to see an object from the same point |

of view, scale or orientation, and that the trajectories | Water | 0.43| 0.28 0.53 0.73| - o

of robots are always the same in the experiments, ag bottler|

will be seen later. BOtt'qu 0.31| 0.17 0,56 0.61| 0.58 | - -
Each robot shares its individual concept as soon as| Vasey || 0.25| 0.6 0.42 0.43| 0.41| 0.32 -

it is learned to improve the representation of this con- | Conex|| 0.31] 0.01 0.2§ 0.28] 0.33 | 0.43 -

cept or to include a new concept in the other robot.

Figure 3 shows the training objects used in this ex-  Table 2: Probability vectors SIFTY) obtained by R1.

periment. As can be seen in the figure, some objects

have the same shape but different texture, some have New (collective concepts R1)

the same texture but different shape, some others ar Objecty Dol-| Vase Car] Soda Watef Bot; Co-

not symmetric in their shape. The objective of this

. X phin bot-| bot- | tle | ne
experiment is to show the performance of the system e | tle
to detect coincident, complementary and confused in- S
formation under a wide variety of conditions. pf(w)ir-p ) ) ) ) ) ) )
Robot 1 (R1) learned during individual trainin 1
(RL) 9 9 MVasee 009 - |- [~ |- |- |-

concepts for: dolphin, can, water bottleand vase
Robot 2 (R2) learned individual concepts farase Cang || 0.12] 0.12 -
soda bottle bottle and cone Note that some ob- Soda || 0.28] 0.11 0.40 - - - -
jects are learned by both robots while others are only| Bottlerg
learned by one robot. Water || 0.15] 0.59 0.20 0.20]| - - -
While learning a new concept, each robot has to | bottlex
decide whether to fuse the current concept with a pre-| Bottlezd| 0.08] 0.15 0.6 0.04]| 0.12 ] - -
viously known concept or include it as a new one. Ta- [Vjase, [ 0.16] 1.0J 0.23 0.10] 0.08 | 0.04
bles 1 and 2 show the probability vectors of the PC Conew|| 0.05] 0.28 0.43 0.10] 0.14 | 0.04
features based on shapg)and of the SIFT features
(v%) obtained by Robot 1. Tables 3 and 4 show the
probability vectors of the PG/$) and SIFT ¢3) fea-
tures obtained by Robot 2. In these tables the coinci- it. In the second row, R2 then learns abeaseand
dent information is represented in bold. shares this concept to R1. The probability, according
We used the defined criteria in Section 4.2 to to the PCA features to be dolphinis 0.19 (second
recognize coincident, complement or confused con- row). R1 learns the objecan which has a probabi-
cepts, witha = 0.65 as threshold value, and the lity of 0.31 to be adolphinand a probability of 0.26
probability vectors of Tables 1, 2, 3 and 4. to be avase which was learned by R2 and shared to
Tables 5 and 6 show the results of the analysis per- R1 (third row). In the fifth row, R1 learns abouta-
formed by each robot. As can be seen from these ta-ter bottlebut it confuses with theoda bottldearned
bles, each robot encountered the three types of possi-and shared before by R2. As can be seen from Fig-
ble information and fuse its concepts accordingly. ure 3, both objects have the same shape and conse-
For instance, Table 1 shows how are the probabi- quently the PCA features are not able to discriminate
lities of objects of R1 affected using only PCA over between these two objects. This is not the case for
shapes of objects, as both robots encounter and learrthe SIFT features, which prevent R1 to consider it as
concepts while traversing the environment. In the first the same object (as explained below). In the seventh
row, R1 learns about the concejatiphinand acquires  row, R1 learns aboutasewhich was already learned




Table 3: Probability vectors P(Y/E() obtained by R2.

Table 5: Detected information by R1 for each own and
shared individual concepts.

New (collective concepts R2) Indivi- Related| v§ V3 Kind
Objecty Vase Dol-| Soda Car| Bot; Watef Co- dual objects of
phin| bot- tle | bot- | ne concepts info.
tle tle Dol- - - - Complée-
Vaseo || - - - - - - - phingy mentary
Dr?ilr_1 0.19 - - - - - - Vaseo Al 1 v,%(z,l) < Vjé(z.l) < | Comple-
g de s (Il =1|065 |065 | Mmentan
oda ] .36| - - - - - to
bottlery numOb f)
Carg; || 0.26 0.31] 0.58] - - - - Canxt All | v,%<3|)< vgm < | Complée-
Bottlezd] 0.17 0.31] 0.61] 0.56 - | - - 065 | 065 | mentar
Water || 0.29 0.44] 0.73| 0.54 0.5§ - - Soda All'l VB < | V&, < | Comple-
bottler bottler, ogg oég mentary
Conegg|| 0.01 0.31] 0.28| 0.28 0.43 0.33 | - Water Soda V]|5 = Vi < | Confuse
Vasey || 0.69 0.25] 0.43| 0.42 0.32 0.41 | 0.0] bottlers | bottle | 073 Osg’g type 2
Bottlez, | Can v,%(sl) < vé(G )= Confuse
. : 065 | 065 |typel
Table 4: Probability vectors SIFW@ obtained by R2. T T —
Vasey Vase vpm) =|V — Coinci-
( ( dent
New (collective concepts R2) 0i69 1i00
Objecty Vase Dol-| Soda Car| Boty Watef Co- Conez All'l VP(S,I) < VS(S,I) < | Comple-
phin| bot- tle | bot- | ne 065 | 0.65 | mentary
tle tle
Vasey || - - - - - - -
Dol- 0.18 - - - - - -
phingy o Vi Vs X P ]
Sot?la 0.11 0.28| - - - - - a (Vi Vg xPu) + (1= viy) x (1-Vg) x (1—Py) ©
Ottlery)
Carmg || 012 0.12) 0.04| - |- |- - where P, is a uniform probability distribution
Bottler]] 0.15 0.08] 0,04 064 - [- |- (s = mamepp) VP = P(PC projection| Class=
Water || 0.59 0.15| 0.20{ 0.20 0.12 - - i), ViS = p(SIFT matching| Class = i), Pli?, is
bottlery) the Bayesian probability vectorp(Class= i |
Coneg| 0.09 0.05| 0.10| 0.43 0.09 0.14 | - PCprojectionSIFT matching, andl is the index of
Vasey || 1.00 0.16| 0.10| 0.23 0.09 0.08 | 0.1Z the Bayesian probability vector, where the maximum

merged.

water bottle vase bottle soda bottleand dolphin

Once an object is detected, the robigtefvaluates its
class using the PG/) and SIFT () probability vec-

approach:

size of the probability vector isumOb js.

Figures 4, 5 and 6 show the average probabilities
obtained during the object recognition task for each
and shared by R2, and in this case both concepts areset of images of the same class, using the individual
and collective learned concepts. The dotted bars in-

To test the performance of the individual concepts dicate the classification errors. A classification error
and the collective concepts acquired by each robot, is produced when a robot classifies an unknown ob-
the concepts were used in an object recognition task.ject with a probability> 0.6. The unknown objects
Each robot followed a predefined trajectory to recog- for robots 1 and 2 are those which were not learned
nize objects in the environment. The objects were de- during their individual training.
tected by the robot team in the following ordeone

The classification errors of Robot 1 in Figure 4
occur when the objectsoneg bottle andsoda bottle
are classified adolphin water bottleandwater bot-
tle, respectively. The classification errors of Robot 2
tors and combines both probabilities using a Bayesian occur when the objectsan water bottleanddolphin
are classified abottle soda bottleand soda bottle



Table 6: Detected information by R2 for each own and
shared individual concepts. =il e
A Individual concepts R2

[ Collective concepts
R1

Average of SIFT probabilities

|ndIVI- Related V|23 V% Klnd N Collective concepts
dual objects of YT—
concepts info. B Clsicaronerros
Vase - - - Compler

mentar) Cone Water botde Vase Botde Soda bottie Dolphi
Dr(])_l All k Veow < | Vauu < Comtple Testoby
PRINRL 0.65 0.65 mentary Figure 5: Average SIFT classification probabilities for the
Soda All k Prak < VZ g < Compler object recognition task using the individual and collegtiv
bottlez, 0 %5) 0 65) mentary SIFT concepts. Any robot makes classification errors.

Canxy All k V|23<4,k) < vz%k) < | Comple

0.65 0.65 mentary
Bottlez, | All k Vs < | V& < | Confus¢

P
(5.k) 5,k) ividual concepts
065 |065 |typel B i onept 2
) — i [M Collective conce pts
Water Soda VBes = | VSen < Confuse S G concers

Average of Bayesian probabilities

bottlezy | Bottle | 0.73 | 0.65 | type2
Coneyp | All k Vi < v§7k)< Comple|

B Classificationerrors
R1

B Classificationerrors
R2

P .
(7.0 AR
065 065 mentar) Cone Water bom—;es\[/:;je(tssome Soda bottle Dolphin
Vasexn Vase v%gl = vg(sl = Coinci-
0 %’9) 1 00) dent Figure 6: Bayesian classification probabilities which uses
- - the Bayesian fusion of the PCA and SIFT classification
probabilities.
&
é S indvidual concepts R1 . R . .. .. R
2 o e jects used during the individual training (reported in
& W parentheses). As can be seen the collective concepts
E - S produce a significantly better precision.
s R1
3

B Classification errors
R2

Table 7: Precision in the object recognition task using the
individual and collective concepts acquired by each robot.

AR

Cone Water botde Vase Bottle Soda botdle Dolphin

Test objects Rl R2 Rl'RZ R2-R1

Figure 4: Average PC classification probabilities for the ob PCA | 5569 % | 4998 % | 86.15% 86.16%

ject recognition task using the individual and collective P (10000 %) (94.82%
concepts. SIFT| 4832 % | 4289 % | 87.84% 87.84 %

(86.23%) | (79.11%
Bayes 5250 % | 51.68 % | 80.73% 80.73%
(94.20 %) | (8154 %

respectively. For thegasethere is no classification er-
ror because both robots learn individual concepts of
it.
Although the probability bars presented in the pre- 5.2 Accuracy of the individual and
vious figures show a higher probability for individual collective concepts
concepts than for collective concepts, in reality the
collective concepts are more robust as they represenfn this section we compare the results of the indivi-
the probabilities considering a larger number of ob- dual concepts with that of collective concepts. In each
jects. This will be discussed in Section 5.2. experiment, a different set of objects was used, and
We show in Table 7 the precision of the object both robots learned the same set of objects. There-
recognition task using the individual and collective fore, all the shared concepts were coincident, that is,
concepts. The precision is presented in two ways, robots learned both individually and collectively the
one considering the total number of objects and the same number of concepts. At the end of each ex-
other one taking into a count only the number of ob- periment the robots learned four concepts that were



proved by a test sequence. In Figure 7 we presentthe ™°
accuracy obtainded by the robots using the PC fea- :D 7
tures of the individual and collective concepts in an
object recognition task. Figure 7 shows the averages
in accuracy of the number of images well classified
under six experimentsérrect), the average percent-
ages of the number of non detected or non classified = .
images (o detecte}] and the average percentage of = N
false positives for each concepgtlée +). Figure 8 Correct ~ Non detected  False +
and 9 show, respectively, the accuracy obtained by the
robots when using the SIFT vectors and the Bayesian
approach.

As it can be observed in Figures 7, 8 and 9, the
accuracy that indicate the quantity of well classified o
images ¢orrecf) using the collective concepts for the
object recognition task, is in general better than the
accuracy using the individual concepts. For PC, SIFT
and Bayes there is an improvementin the accuracy up
to 256 %, 1379 % and20.62 %, respectively. This
demonstrates that the collective concepts have bettelg e
coverage than the individual concepts because they
contain information acquired from different points of T o Wenidedss | ke
view, which allows a better recognition of test ob- ) )
jects. Also, the percentages of the number of non de- Figure 8: Accuracy in coverage using the part SIFT of con-
tected images of collective concepts are smaller than cepts.
the ones of the individual concepts. For PC, SIFT
and Bayes there is a reduction in the percentage of
non detected images of up t058%, 1379% and g CONCLUSIONSAND FUTURE
20.62%, respectively. In Table 8 we present the av- WORK
erage percentages of false positives for both, the in-
dividual and the collective concepts acquired by the ) ) )
robots. We conclude that the collective concepts have In this paper we have introduced a new on-line learn-
better quality than the individual concepts. ing framework for a team of robots. Some of the main

In general for both, the individual and the collec- feéatures of the proposed scheme are:

tive concepts, we observed an improvementinthe ac- 4 The robots do not know in advance how many

curacy when using the Bayesian approach. InTable 9 gpjects they will encountered. This pose several

we present the average percentages of accuracy using  proplems as the robots need to decide if a new

the individual and collective concepts. seen object or shared concept, is of a previously
The average profitin the percentages of classifica-  |earned concept or not.

tion using the Bayesian approach using the collective

concepts with regard to the individual concepts is of ¢ 11€ representation of objects are leamed on-line
14.63%. while the robots are traversing a particular en-

vironment. This is relevant for constructing au-
tonomous robots.

B Individual con-
cepts R1

Individual con-
cepts R2

[0 Collective con-
cepts R1

Collective con-
cepts R2

Average percentages PCA

Figure 7: Accuracy in coverage using the part PC of con-
cepts.

B Individual con-
cepts R1

Individual con-
cepts R2

D Collective con-
cepts R1L

Collective con-
cepts R2

age percentages SIFT

Table 8: Average percentages of false positives.

PCA SIFT | Bayes
Individual | 14.42% | 0.64 % | 0.64 %
Collective | 13.14% | 0.00% | 0.00 % The detection of coincident concepts avoids pro-
ducing multiple concepts for the same object. The
detection of complementary concepts allows to detect

e Three possible cases in which to merge concepts
and how to merge them were identified.

Table 9: Average percentages of accuracy. and learned unknown objects not seen by a particular
PCA SIET Bayes robot. The detection of confused concepts allows to

Individual | 8494 % | 67.88 % | 80.18 % fuse information: 1) when the object have different
Collective | 87.18% | 8112 % | 9481 % shape and similar SIFT features, and 2) when the ob-

jects have similar shape and different SIFT features.
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Silhouette with stered?roceedings of the IEEE Com-
puter Society Conference on Computer Vision and

S0
80

2 70 7 Sindividiial cofi- Pattern Recognition (CVPR '032:375-382.
o / cepts RL . .
£ @ % 7 Individual con- Ekvall, S., Jensfelt, P., and Kragic, D. (2006). Integmtin
g = / coptsR2 active mobile robot object recognition and SLAM in
/ M Collective con-

a» % cepts A1 natural environmentsIEEE/RSJ International Con-
B o % gg}‘)‘t@;g‘f cop- ference on Intelligent Robots and Systems (IROS '06)
Zm =% %ﬂﬂm pages 5792-5797.

a cm o el e Ekvall, S. and Kragic, D. (2005). Receptive field cooccur-

rence histograms for object detectiolEEE/RSJ In-

Figure 9: Accuracy in coverage using the Bayesian ap- ternational Qonference on Intelligent Robots and Sys-
proach. tems (IROS '05)pages 84-89.

Fernandez, F., Borrajo, D., and Parker, L. E. (2005). A re-
inforcement learning algorithm in cooperative multi-
robot domainsJournal of Intelligent and Robotic Sys-

These cases are particularly difficult to deal with be- tems pages 161-174.

cause the objects may be genuinely different or may Howard, A., Parker, L. E., and Sukhatme, G. S. (2006).
be the same but seen from different points of view by Experiments with a large heterogeneous mobile robot
the robots team: Exploration, mapping, deployment and detec-

. L . tion. International Journal of Robotics Research
In general, the object recognition using the collec- 25:431-447.

tive concepts had a better performance than using the

S . . Lowe, D. G. (2004). Distinctive image features from scale
individual concepts in terms of accuracy. This occurs

invariant keypoints. International Journal of Com-

because 'Fhe CoII_ective concepts co_nsider information puter Vision 60(2):91~110.
from multiple points of view producing more general Mataric, M. J. (1997). Reinforcement learning in the multi
concepts. . robot domain.Autonomous Robqtg(1):73-83.

_AS future Work_We propose to_ mtegr_ate schemes to Méndez-Polanco, J. A., Miwz-Meléndez, A., and Morales,
object segmentation for dynamic environments. For E. F. (2009). People detection by a mobile robot using
instance, using an object segmentation based on dis-  stereo vision in dynamic indoor environmentBro-
tance as in Méndez-Polanco et al., 2009. Use a differ- ceedir_lgs_ of the Sth Mexican International Conference
ent set of features and identify possible conflicts be- on Artificial Intelligence (MICAI "09) 5845:349-359.
tween more that two kind of features. We also plan to Mitchell, T. M. (1997). Machine Learning McGraw-Hill
incorporate planning of trajectories to autonomously Science/Enginering/Math.

allocate the environment among robots. We also planMitri, S., Pervolz, K., Surmann, H., and Nuchter, A.
to add strategies to solve some confusions in shared ~ (2004). Fast color independent ball detection for mo-

; ; ; ; bile robots. Proceedings of the IEEE International
(li(_)ncllepts byltakltng dlfferentt\llews frlom_ttf;]eS? ObJ%Ctts' Conference Mechatronics and Robotics (MechRob
inally, we plan to incorporate our algorithm for robo '04), pages 900—905.

localization and search of objects, and to test our work

for robot teams with three or more robots. Montesano, L. and Montano, L. (2003). Identification of

moving objects by a team of robots based on kine-
matic information. Proceedings of the IEEE/RSJ In-
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