
Learning Relational Grammars from Sequences

of Actions

Blanca Vargas-Govea and Eduardo F. Morales

National Institute of Astrophysics, Optics and Electronics
Computer Science Department

Luis Enrique Erro 1, 72840 Tonantzintla, México
{blanca,emorales}@inaoep.mx

Abstract. Many tasks can be described by sequences of actions that
normally exhibit some form of structure and that can be represented
by a grammar. This paper introduces FOSeq, an algorithm that learns
grammars from sequences of actions. The sequences are given as low-level
traces of readings from sensors that are transformed into a relational
representation. Given a transformed sequence, FOSeq identifies frequent
sub-sequences of n-items, or n-grams, to generate new grammar rules
until no more frequent n-grams can be found. From m sequences of the
same task, FOSeq generates m grammars and performs a generalization
process over the best grammar to cover most of the sequences. The gram-
mars induced by FOSeq can be used to perform a particular task and
to classify new sequences. FOSeq was tested on robot navigation tasks
and on gesture recognition with competitive performance against other
approaches based on Hidden Markov Models.

1 Introduction

Sequences are used to describe different problems in many fields, such as natural
language processing, music, DNA and gesture recognition, among others. The
analysis of such sequences often involves exploiting the information provided
by the implicit structure of the sequences that can sometimes be represented
by a grammar. Learning grammars from sequences offers several advantages.
Suppose that you have a set of sequences of actions performed by a robot to move
between two designated places avoiding obstacles. If we could infer a grammar
from such sequences, we could use it to recognize when a robot moves between
two places and also to generate a sequence of actions to perform such task.
Another advantage is that a grammar normally includes sub-concepts that can
include other sub-concepts or primitive actions, which can be used to solve other
sub-tasks.

Grammars can be represented by different formalisms, the most commonly
used is context-free grammars (CFGs). In this paper, we use Definite Clause
Grammars (DCGs), a generalization of CFGs that use a relational representa-
tion. This is important as it allows us to apply the learned grammar to different
instantiations of a more general problem.

2 Blanca Vargas-Govea and Eduardo F. Morales

We focus on learning grammars from sequences of actions that can be used as
programs to execute a task and as classifiers. The training sequences are provided
by the user, the main idea is to show the system what to do instead of how to
do it (e.g., steering the robot avoiding obstacles or moving a hand), simplifying
the programming effort. The set of traces consists of low-level sensor readings
that are transformed into a high level representation. The transformed sequences
are given to an algorithm (FOSeq) that induces grammars that can be used to
reproduce the original human-guided traces and to identify new sequences.

The approach was applied in two domains: (i) robot navigation and (ii) ges-
ture recognition. We tested the learned navigation grammars in a robotics sce-
nario with both simulated and real environments and show that the robot is
able to accomplish several navigation tasks. The gesture recognition was tested
using a public database of gestures, showing that the classification accuracy is
competitive with other common approaches with the advantage of learning an
understandable representation.

This paper is organized as follows. Section 2 reviews related work. Section 3
describes the grammar learning algorithm. Section 4 presents the navigation task
while Section 5 describes the gesture recognition experiment. Conclusions and
future research directions are given in Section 6.

2 Related Work

Grammar induction has been commonly studied in the context of Natural Lan-
guage Processing. Most of the approaches use grammars as parsers and focus
on specific problems and are rarely used to solve other related problems. Other
researchers have tried to induce grammars using a relational representation.
EMILE [1] and ABL [2] are algorithms based on first order logic that learn the
grammatical structure of a language from sentences. Both algorithms focus on
language and it is not easy to extend them to other applications. GIFT [3] is
an algorithm that learns logic programs but it requires an initial rule set given
by an expert. In contrast, FOSeq learns relational grammars from sequences of
actions, where the grammars are logic programs that can reproduce the task de-
scribed by the sequences. A grammar induction technique closely related to our
work is SEQUITUR [4], an algorithm that infers a hierarchical structure from a
sequence of discrete symbols. However, SEQUITUR handles only constant sym-
bols, is based on bi-grams (sets of two consecutive symbols), and consequently,
the learned rules can only have pairs of literals in their bodies, and it does
not generalize rules. FOSeq employs a relational approach, is not restricted to
bi-grams and is able to generalize.

Learning from sequences has been used in robotics to learn skills. In [5]
a robot has to learn movements (e.g., aerobic-style movement) showed by a
teacher. To encode the movements, and subsequently be able to recognize them,
they used Hidden Markov Models (HMM). However, this representation is not
easy to interpret and does not capture the hierarchical structure of the sequences.

In our approach, hierarchical skills can be learned from sequences of basic
skills. Another domain that has been used to learn from sequences is gesture

Learning Relational Grammars 3

recognition, which is an important skill for human–computer interaction. Hid-
den Markov Models and neural networks are standard techniques for gesture
recognition. However, most of the approaches have emphasized on improving
learning and recognition performance without considering the understandability
of the representation [6].

3 Learning grammars with FOSeq

The general algorithm can be stated as follows: from a set of sequences, (i) learn
a grammar for each sequence, (ii) parse all the sequences with each induced
grammar, evaluate how well each grammar parses all the traces, and (iii) apply a
generalization process to the best grammar trying to cover most of the sequences.

1: Grammar induction. Given a trace of predicates the algorithm looks for
n-grams (e.g., sub-sequences of n-items, in our case n-predicates) that appear at
least twice in the sequence. As in Apriori [7], the candidate n-grams are incre-
mentally searched by their length. The search starts with n = 2 and ends when
there are no more repeated n-grams for n ≥ 2. The n-gram with the highest
frequency of each iteration is selected, generating a new grammar rule and re-
placing in the sequence, all occurrences of the n-gram with a new non-terminal
symbol. If there is more than one n-gram with the same highest-frequency, the
longest n-gram is selected. If there are several candidates of the same length, the
algorithm randomly selects one of them. Repeated items are removed because
items represent actions that are executed continuously while specific conditions
hold. Therefore, the action will be repeated even if it appears only once.

Example. Let us illustrate the grammar induction process with the following
sequence of constants: S → a b c b c b c b a b c d b e b c. FOSeq looks for
n-grams with frequency ≥ 2 as candidates to build a rule. In the first iteration
there is only one candidate: {b c} with five appearances in the sequence. This
n-gram becomes the body of the new rule R1→b c. The n-gram is replaced by
the non-terminal R1 in sequence S, generating S1 and removing repeated items.
In the second iteration FOSeq finds three candidates: {R1 b}, {a R1} and {a R1
b} with two repetitions each. FOSeq selects the longest item: {a R1 b} and a
new rule is added: R2→a R1 b. Sequence S2 does not have repeated items and
the process ends. Figure 1 shows the learned grammar where R1 and R2 can be
seen as sub-concepts in the sequence.

S2 → R2 d b e R1
R1 → b c
R2 → a R1 b

R2 d b e R1

b ca R1 b

b c

Fig. 1. Induced grammar for sequence S. S2 is the compressed sequence after the
induction process. The grammar describes the hierarchical structure of the sequence.

When the items of the sequence are first–order predicates the learned gram-
mar is a definite clause grammar (DCG). DCGs are an extension of context
free grammars that are expressed and executed in Prolog. In this paper we have

4 Blanca Vargas-Govea and Eduardo F. Morales

sequences of predicates that are state-action pairs with the following format:
pred1(State1,action1), pred2(State2,action1), pred1(State3,action2), . . .

For repeated predicates a new predicate is created, where State is the first
state of the first predicate and Action is the action of the last predicate. For
instance, suppose that the following pair of predicates is repeated several times
in the sequence: . . ., pred1(Statej ,Action1), pred2(Statek,Action2), . . ., then the
following new predicate is created:
newpred(State1,Action2) ← pred1(State1,Action1), pred2(State2,Action2) .

2: Grammar evaluation. A grammar is created for each sequence. Every
learned grammar is used to parse all the sequences in the set of traces pro-
vided by the user and the best evaluated grammar is selected. The measure of
how well the grammar parses is calculated using the following function:

eval(gi) =
m

X

i=1

ci

ci + fi

where gi is the grammar being evaluated from a set of m sequences, ci and fi

are the number of items that the grammar is able or unable to parse respectively
and i is the index of the sequence being evaluated. When a grammar is not able
to parse a symbol, it is skipped. FOSeq selects the grammar that best parses the
set of sequences.

3: Generalization. The key idea of the generalization process is to obtain a new
grammar that improves the covering of the best grammar. It is performed using
pairs of grammars. For example, if the best grammar describes the trajectory
of a mobile robot when its goal is to the right, we would expect that another
sequence provides information about how to reach a goal to the left of the robot.
The generalization process generates a clause that covers both cases calculating
the lgg (least general generalization [8]) of both clauses. The process can be
summarized as follows:

1. Select the best grammar gbest

2. Select the grammar gother that provides the largest number of different in-
stantiations of predicates.

3. Compute the lgg between grammar rules of gbest and gother with different
instantiations of predicates and replace the grammar rule from gbest by the
resulting generalized rule.

4. If the new grammar rule improves the original coverage, it is accepted, oth-
erwise it is discarded.

5. The process continues until a coverage threshold is reached, gbest rules cover
all the rules in the other grammars or there is no longer improvement with
the generalization process.

The generalization process is used to produce a more general grammar appli-
cable to different traces of the problem. Table 1 shows the lgg of clauses c1 and
c2 where the constants action2 and action3 are replaced by the variable Action.

4 Learning Navigation Tasks

When a mobile robot navigates through an office/house environment it de-
scribes a trajectory that can be represented by sequences of actions. Our ap-

Learning Relational Grammars 5
Table 1. lgg example

c1 c2 lgg(c1,c2)

pred(State,action2) ← pred(State,action3) ← pred(State,Action) ←
cond1(State,action1), cond1(State,action1), cond1(State,action1),
cond2(State,action2). cond2(State,action3). cond2(State,Action).

proach is based on a teleo-reactiveframework where learned DCGs represent
Teleo-Reactive Programs (TRPs) [9]. TRPs are sets of reactive rules that sense
the environment continuously and apply an action whose continuous execution
eventually satisfies a goal condition. The following basic navigation TRPs are
learned in [10]: wander, orient, leave-a-trap and follow-a-mobile-object.

Learning to go to a target point. Given a sequence consisting of wander

and orient FOSeq is used to learn a grammar that can go between two places
using such skills and possibly inducing intermediate concepts. The user steered
the mobile robot with a joystick to reach different goals producing 8 traces.
FOSeq learned 8 grammars, one for each trace. After being evaluated, the best
induced grammar covered 99.29% of the traces. Table 2 shows the generalized
rules learned from the trace of 8 sequences. Predicate names were given by the
user. Each rule describes a sub-task along the navigation trajectory. For example,
R1 describes the “turning-to-goal” behavior and R2 describes the “direct-to-
goal” behavior when the robot does not need to turn because the goal is in its
same direction and it wanders to reach the goal. Table 3 shows other hierarchical
TRPs learned using other basic skills: wander, orient, follow and leave-trap.

Navigation experiments. The experiments were carried out in simulation and
with a service ActivMedia robot equipped with a sonar ring and a Laser SICK
LMS200 using the Player/Stage software [11]. The goal of the experiments is
to show that the learned TRPs can control the robot in completely unknown
and dynamic environments. We evaluate the performance of the learned TRPs
in 10 different scenarios, with different obstacles’ sizes and shapes, and with
static and dynamic obstacles. The TRPs were evaluated by the percentage of
tasks successfully completed, and the number of operator interventions (e.g., if
the robot enters a loop). The robot’s initial position and the goal point (when
applicable) were randomly generated. In each experiment two operator interven-
tions are allowed, otherwise, the experiment fails. Table 3 summarizes the results
in simulation. It is shown the number of tasks to test each TRP, the operator
interventions and the accuracy with (Acc1) and without interventions (Acc2).

The learned TRPs were integrated as the navigation module of a PeopleBot
service robot [12]. The given tasks were: (i) following a human under user com-
mands, (ii) navigating to several places in the environment. Each place has a
previously defined name (e.g., kitchen, sofa), (iii) finding one of a set of different
objects in a house, and (iv) delivering messages and/or objects between different
people. The first three tasks are part of the RoboCup@Home challenge. Naviga-
tion and follow videos can be seen at: http://www.youtube.com/user/anon9899

Table 2. Goto TRP rules
(R1) turning-to-goal(State1,go-fwd) → orient(State1,Action), wander(State2,go-fwd)
(R2) direct-to-goal(State1,Action) → orient(State1,equal), wander(State2,Action)
(R3) cannot-orient(State1,Action) → orient(State1,none),wander(State2,Action)
(R4) ramble(State,Action) → wander(State,Action)

6 Blanca Vargas-Govea and Eduardo F. Morales

Table 3. Accuracy: Hierarchical TRPs

TRP #seq. Tasks Int. Acc1 Acc2

wander + orient (goto) 8 30 2 93.33 86.67
wander + orient + leave-trap 12 30 1 96.67 93.33
follow + wander 10 40 2 95 90
follow + wander + leave-trap 14 40 0 100 100

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Gesture set: (a) initial and final position, (b) attention, (c) come, (d) left, (e)
right, (f) stop, (g) turn-right, (h) turn-left, (i) waving, (j) pointing

5 Dynamic Gesture Recognition

Interacting with gestures is a natural human ability that can improve the human-
computer communication. In this section it is described how to learn grammars
from sequences of dynamic gestures and use them to classify new sequences.

FOSeq transforms low-level information from sensors into a relational rep-
resentation. We have sequences of state-value pairs, where a value can be an
action or a boolean variable, as described below. We used a database1 of 7308
samples from 9 dynamic gestures taken from 10 men and 5 women. Figure 2(a)
shows the initial and final position for each gesture. The whole set can be seen
in Figures 2(b)-(j). Gestures were executed with the right arm and they were
obtained using the monocular visual system described in [6].

Each sequence is a vector with sets of seven attributes describing the executed
gesture. An example of a sequence is: (+ + −− T F F)(+ + − + T F F) . . . where
the first three attributes of each vector describe motion and the rest describe
posture. Motion features are ∆area, ∆x and ∆y, representing changes in hand
area and changes in hand position of the XY-axis of the image respectively.
These features take one of three possible values: {+,−,0} indicating increment,
decrement or no change, according to the area and position of the hand in a
previous image. Posture features are: form, above, right and torso, and describe
hand appearance and spatial relations between the hand and face/torso. Hand
appearance is described by form. Possible values for this feature are {+,−,0}:
(+) if the hand is vertical, (−) if the hand has horizontal position, and (0) if
the hand is tilted to the right or left over the XY plane. Features right and
torso indicate if the hand is to the right of the head and over the torso. Based

1 Database available at http://sourceforge.net/projects/visualgestures/

Learning Relational Grammars 7

Table 4. Confusion matrix for 10 sequences. Classes: 1) attention, 2) come, 3) left, 4)
pointing, 5) right, 6) stop, 7) turn-left, 8) turn-right, 9) waving

1 2 3 4 5 6 7 8 9

1 99.33 0.67 300
2 97.24 2.76 290
3 100 290
4 13.10 1.72 85.17 290
5 100 300
6 1.03 97.59 1.38 290
7 2.07 96.55 1.38 290
8 100 290
9 100 290

301 320 295 255 306 283 280 292 298 2630

on this information, sequences are transformed into a first-order representation
by replacing their attributes with a meaningful fact (e.g., hmove(State, right),
vmove(State, up),size(State,inc), shape(State, vertical), . . .).

We focused on the recognition between gestures produced by one person
following the experimentation setting described in [6]: (i) from 50 sequences of
each gesture, randomly select 20 sequences to learn the grammars and build
training sets of 2 and 10 sequences, (ii) learn a grammar for each gesture, (iii)
test the grammars with remaining 30 sequences, (iv) repeat 10 times.

The overall accuracy obtained by FOSeq and the HMM approach in [6] is
as follows: both training sub-sets FOSeq performs similar to HMMs: with 2
training sequences, FOSeq got 95.17%, whereas HMMs 94.85%. With 10 train-
ing sequences, FOSeq got 97.34%, and HMMs 97.56%. These results are very
promising as HMM is the leading technique in this application. Table 4 shows
the confusion matrix that expresses the proportion of true classified instances
for 10 training sequences. The best classified gestures are: left, right, turn-right

and waving (100%) whereas pointing is the worst classified gesture (85.17%).
Misclassification are concentrated between pointing and come.

Learned grammars for pointing and come have 5 common rules whereas right

and left grammars do not have any. For instance, an identical grammar rule
for pointing/come is: R1 → above face(State,false) over torso(State,true) ex-
plaining that the hand is not near the face but it is over the torso. This type
of similarities and the identification of common sub–gestures is not possible to
obtain with other approaches. Learning relational grammars for gesture recog-
nition produces an explicit representation of rules and is able to identify and
generate rules for sub-gestures. It also helps to find similarities between different
gestures and has a competitive performance against HMMs.

6 Conclusions and Future Work

In this work we have introduced an algorithm called FOSeq, that takes sequences
of states and actions and induces a grammar able to parse and reproduce the se-
quences. FOSeq learns a grammar for each sequence, followed by a generalization

8 Blanca Vargas-Govea and Eduardo F. Morales

process between the best evaluated grammar and other grammars to produce a
generalized grammar covering most of the sequences. Once a grammar is learned
it is transformed into a TRP in order to execute particular actions and achieve
a goal. FOSeq was able to learn a navigation grammar from sequences given by
the user and used the corresponding TRP to guide the robot in several naviga-
tion tasks in dynamic and unknown environments. FOSeq was also used to learn
grammars from gesture sequences with very competitive results when compared
with a recent state-of-the-art system. As part of our future work, we are work-
ing on learning more TRPs to solve other robotic tasks, we plan to extend the
experiments with gestures to obtain a general grammar for a gesture performed
by more than one person, and we are interested in reproducing gestures with a
manipulator.

References

1. Adriaans, P.W., Trautwein, M., Vervoort, M.: Towards high speed grammar induc-
tion on large text corpora. In: SOFSEM ’00: Proceedings of the 27th Conference
on Current Trends in Theory and Practice of Informatics, London, UK, Springer-
Verlag (2000) 173–186

2. van Zaanen, M.v.: Abl: alignment-based learning. In: Proceedings of the 17th
conference on Computational linguistics, Morristown, NJ, USA, Association for
Computational Linguistics (2000) 961–967

3. Bernard, M., de la Higuera, C.: Gift: Grammatical inference for terms. Interna-
tional Conference on Inductive Logic Programming (1999)

4. C.Nevill-Manning, Witten, I.: Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research 7 (1997) 67–82

5. Amit, R., Mataric, M.J.: Learning movement sequences from demonstration. In:
ICDL ’02: Proceedings of the 2nd International Conference on Development and
Learning, Cambridge, MA (2002) 12–15

6. Avilés-Arriaga, H., Sucar, L., Mendoza, C.: Visual recognition of similar gestures.
18 International Conference on Pattern Recognition ICPR 2006 1 (2006) 1100–1103

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (12–15 1994) 487–499

8. Plotkin, G.: A note on inductive generalization. Machine Intelligence 5 (1969)
153–163

9. Benson, S., Nilsson, N.J.: Reacting, planning, and learning in an autonomous
agent. Machine Intelligence 14 (1995) 29–62

10. Vargas, B., Morales, E.F.: Learning navigation teleo-reactive programs using be-
havioural cloning. IEEE International Conference on Mechatronics. ICM 2009.
(2009) 3011–3016

11. Vaughan, R.T., Gerkey, B.P., Howard, A.: On device abstractions for portable,
reusable robot code. In: En IEEE/RSJ International Conference on Intelligent
Robots and Systems. (2003) 2421–2427

12. Avilés, H.H., Sucar, L.E., Morales, E.F., Vargas, B.A., Sánchez, J., Corona, E.:
Markovito: A flexible and general service robot. In: Studies in Computational
Intelligence. Volume 177., Springer Berlin / Heidelberg (January 2009) 401–423

