
Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Eduardo Morales, Hugo Jair Escalante

INAOE

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 1 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Outline

1 Function approximation

2 Deep Reinforcement Learning

3 Applications: Games and Robotics

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 2 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Function Approximation
• So far, we have assumed an explicit representation of

the value function in the form of a table, which works
well in small spaces, but is unfeasible in domains like
Chess (10120) or in continuous spaces, like in robotics
• An alternative is to use an implicit representation, i.e., a

function
• For instance, in games an estimated utility function can

be represented by a weighted linear function over a set
of attributes (fi ’s):

V (i) = w1f1(i) + w2f2(i) + . . .+ wnfn(i)

• In Chess there are approximate 10 weights which is
clearly a significant compression

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 3 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Learning Functions

• The compression obtained with an implicit
representation allows the learning system to generalize
over states which were not visited
• There is a large number of options that can be used, in

RL, researchers have used NN, SVM, decision trees,
Gaussian processes, etc.
• As in any learning system, there is a balance between

the hypotheses space and the reasoning process
• RL setting poses some challenges to traditional

supervised learning: Non stationary, delayed rewards,
bootstrapping, on-line learning, non independent
samples

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 4 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Alternatives for Value functions

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 5 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Learning Functions

• With large state-action spaces, we want to estimate a
policy or value function which is close to the real
function, e.g., Qθ(s,a) ∼ Q(s,a) with parameters θ (or
Vθ(s) ∼ V (s) or πθ(a|s) ∼ π(a|s))
• The objective is to find the parameters θ to minimize the

loss between the estimated Qθ(s,a) and the real Q(s,a)

• Generally the loss function is the mean square error:
J(θ) = E[(Q(s,a)−Qθ(s,a))2].

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 6 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Learning Functions

• We can update θ in the direction of the gradient to find a
local minimum: θ ← θ − 1

2α∇θJ(θ).
• In the case where we are approximating the Q function

(Qθ(s,a)), θ can be updated as:

θ ← θ + α(Q(s,a)−Qθ(s,a))∇Qθ(s,a)

• Again, we do not know Q(s,a) and we have to
approximate it
• This is a semi-gradient because we are calculating the

error with an approximation of the real function, and not
with the real function.

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 7 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

A Basic Algorithm (one-step TD function
approximation algorithm)

Initialize the parameters (θ) of the value function arbitrarily
repeat {for each episode}

Initialize s
repeat {for each step in the episode}

Select an action a in s using a policy derived from Q
(e.g., ε–greedy)
Take action a, observe r , s′

θ ← θ + α[r + γQθ(s′,a′)−Qθ(s,a)]∇Qθ(s,a)
s ← s′

until s is terminal
until convergence

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 8 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

A Basic Algorithm

Again, Q(s,a) can take different forms to evaluate the
TD-error, for instance:
• One-step SARSA: r + γQθ(s′,a′)
• One-step Q-Learning: r + γmaxa′Qθ(s′,a′)
• Monte Carlo: Gt

• n-step RL: Gt :t+n where
Gt :t+n = rt+1 + γrt+2 + γ2rt+3 . . . γ

nQθ(st+n,at+n)

We can plug-in any of these forms into the previous learning
algorithm

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 9 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Learning Functions

• When learning functions we have to be careful since we
do not have the real function and the error is evaluated
with the function that we are learning!!
• The data distribution changes as we are learning
• Subsequent examples are correlated which breaks the

assumption of independent samples
• For off-policy algorithms convergence is not always

possible

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 10 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Options to Learn Functions

• Value Functions (V o Q)
• Policy (π)
• Actor-Critic: Both

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 11 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Function approximation

Actor-Critic Algorithms

• Actor (π(a|s; Θ)): Controls how the agent behaves
• Critic (Q(s,a; Θ)): Measures how good are the actions
• Actor-Critic: Runs in parallel, updating the policy and

the value function

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 12 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deep RL

• Learning directly from high-dimensional data (e.g.,
images, videos, etc.) has been one the big challenges
for RL
• Normally, the user needs to define a suitable

representation for the RL algorithm to work
• Recent developments in Deep Learning (DL) have

shown that raw data can be directly used as input for
learning

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 13 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deep RL

However, there are several challenges:
• From a DL point of view, a large number of labelled data

is required
• From an RL point of view, we have sparse and delayed

rewards, and noisy information
• DL assumes the the data is independent and

indentically distributed (i.i.d.) which is not the case for
RL
• In RL the data distribution changes during learning,

which is challenging for DL which assumes a fix data
distribution

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 14 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DQN

• The breakthrough came with the DQN algorithm which
managed to successfully combined Q-learning with
Deep Convolutional Networks
• It was originally applied to learn how to play Atari games
• It should be noted that the same architecture (although

with different learned parameters) was used to learn all
the games
• It achieved expert human level performance in 29 out of

46 games

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 15 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DQN

It involved two main techniques to mitigate some of the
existing problems:

1 Experience replay, which stores the experiences of the
agent at each step (et = (st ,at , rt , st+1)) in a database
D = e1, . . . ,eN
Updates to the Q-function are done by sampling D

2 Uses two networks for learning, one with fixed weights
that is used as reference to the other network which is
updating its parameters
After a fixed number of steps the networks are
interchanged

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 16 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Experience Replay

• Advantages:
1 Each step can be used in several updates
2 Learning from subsequent samples is inefficient due to

strong correlations in the samples
3 Taking the average over several data samples helps to

smooth the learning process and prevents from
oscillations and divergences in the parameters

• Disadvantages:
1 It stores the last N samples, and do not distinguishes

between relevant transitions
2 Requires a large storage capacity

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 17 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Copy of the Value Function

• Another form to reduce variance was to have two
networks, one which has fixed weights and serves as
reference to the other network which is updated during
the learning process
• After M steps the most recent updated network is used

as the fixed network and the learning process continues
• We still have a moving target, but now it stays fixed for

some time which improves convergence

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 18 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Copy of the Value Function

• The gradient of the loss function with respect to its
weights is:

∇θi L(θi) = Es,a,r ,s′[(
r + γmaxa′Q(s′,a′; θ−i)−Q(s,a; θi)

)
∇θi Q(s,a : θi)

]
• Where θ−i refers to the network that estimates Q with

fixed weights and θi refers to the network that is been
updated, and Es,a,r ,s′ means that the updates are done
using the average of these values taken from the
samples of the experience replay
• Every certain number of steps the networks are

interchanged

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 19 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DQN Algorithm

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 20 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DQN

• It learned each game from 50 million game screens
(roughly 38 days of experience per game)
• The screens were converted to black and white images

and reduced to arrays of 84× 84 pixels and were
stacked with the last four frames (i.e., Input =
84× 84× 4)
• Network: Three convolutional layers: 32 (20× 20), 64

(9 × 9), and 64 (7 × 7) feature maps
• The last layer is a dense layer of 512 units connected to

up to 18 output units (one for each possible action)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 21 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DQN

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 22 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Results

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 23 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions to DQN

After the paper on DQN, several researchers proposed
different improvements:
• Prioritized experience replay
• DDQN
• Dueling network
• Multi-step learning: Use eligibility traces in its

forward-view form
• Distributional RL: Learn to estimate a distribution over

rewards, instead of a single expected reward value
• Noisy DQN: Introduces noise that is gradually reduced

to improve the exploration process
• ...

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 24 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Prioritized Experience Replay
• Some experiences may be more relevant than others

but could rarely occur
• The idea of Prioritized Experience Replay is to change

the sampling distribution considering:

pt = |δt |+ e

where |δt | is the size of the TD error and e is a constant
to force that all the samples have a non-zero probability
of being selected
• It also included a parameter to regulate the randomness

over the sampling process and importance sampling
weights to gradually change the sampling weight during
training

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 25 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DDQN
• The Q-learning algorithm can over-estimate the action

values under certain conditions
• To deal with this, DDQN decomposes the updating of

the Q-function in two steps
• The standard updating of the Q-learning function is:

θ ← θ + α(Y Q −Qθ(s,a))∇θQθ(s,a)

but now Y Q (r + γmaxa′ Qθ−(s′,a′)) is changed to
Y DoubleQ:

Y DoubleQ ← r + γQθ−(s′,argmaxaQθ(s′,a))

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 26 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Dueling DQN

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 27 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

RAINBOW
RAINBOW makes a combination of many of the previous
approaches (with some adjustments) and shows that it
improves the performance of all the individual approaches

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 28 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Results

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 29 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Learning

• Instead of trying to learn a value function (V or Q) we
can try to directly learn the policy function (π) or both
• Learning a policy function may be easier than learning a

value function, has better convergence properties and
stochastic policies may be learned
• We would like to learn a policy that produces the

optimal value function under that policy
• An important development is what is known as the

policy gradient theorem

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 30 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient

• For convenience, we will denote Vπθ(s) as V (θ)

• Let τ = (s0,a0, r0, . . . , sT−1,aT−1, rT−1, sT) denote a
trajectory, where sT is the terminal state
• So G(τ) =

∑T
t=0 r(st ,at) and

V (θ) = Eπθ
[∑T

t=0 r(st ,at);πθ

]
=
∑

τ Pθ(τ)G(τ)

where Pθ(τ) denotes the probability over trajectories
when executing policy πθ and G(τ) is the return we
obtain on that trajectory

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 31 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient
• So our goal is to find the policy parameters θ such that:

argmaxθV (θ) = argmaxθ
∑
τ

Pθ(τ)G(τ)

• The policy parameters only appear in the distributions
of trajectories, so the gradient with respect to θ is:

∇θV (θ) = ∇θ
∑
τ

Pθ(τ)G(τ)

can be rewritten as (since ∇ log x = ∇x
x):

∇θV (θ) =
∑

τ G(τ)∇θPθ(τ)

=
∑

τ G(τ)Pθ(τ)
Pθ(τ)

∇θPθ(τ)

=
∑

τ G(τ)Pθ(τ)∇θ log Pθ(τ)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 32 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient

• We are summing over the probabilities of all trajectories,
which we can approximate by sampling some m
trajectories and averaging uniformly:

∇θV (θ) ≈ ĝ =
1
m

m∑
i=1

G(τ (i))∇θ log Pθ(τ (i))

• So we need to evaluate for trajectory i :

∇θ log Pθ(τ (i)) = ∇θ log

µ(s0)
T−1∏
j=0

p(sj+1|sj ,aj)πθ(aj |sj)

where µ(s0) is the probability of the initial state s0 and
πθ(a|s) is the policy that decides which action to take at
each state

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 33 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient

• We can expand the previous expression as:

∇θ log Pθ(τ (i)) = ∇θ logµ(s0)+∑T−1
j=0 ∇θ log p(sj+1|sj ,aj)+∑T−1
j=0 ∇θ log πθ(aj |sj)

• By taking the derivative, and since only the last term
depends on θ:

∇θV (θ)) ≈ ĝ =
1
m

m∑
i=1

G(τ (i))
T−1∑
j=0

∇θ log πθ(aj |sj)

• Which means that we do not need to know the transition
probability, although we still need to evaluate the
gradient of the log of the policy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 34 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient

• In the last expression 1
m
∑m

i=1 G(τ (i)) can be seen as a
Monte Carlo estimate
• We have seen that:

∇θV (θ) = ∇θEτ [G] = Eτ [
T−1∑
t=0

r(st ,at)
T−1∑
t=0

∇θ log πθ(at |st)]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 35 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Policy Gradient

• We can rearrange the summations:

∇θVπθ = Eτ [
T−1∑
t=0

∇θ log πθ(at |st)
T−1∑
i=t

r(st ,at)]

• Where the last summation corresponds to the return Gt ,
which is the sum of the rewards from a particular state
until a terminal state

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 36 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

REINFORCE
• REINFORCE is an algorithm that approximates a policy

function using the policy gradient theorem [Williams,
1992]
• The algorithm follows a Monte Carlo approach (i.e.,

updates parameters after completing a full episode)
• Following the previous expression, with the discounted

reward, the parameters of the policy function are
updated with:

θt+1 = θt + αγtGt∇θ log πθ(at |st)

where:
• γt is a discount factor multiplied by the number of times

it reaches the state
• Gt is the return (total accumulated reward) obtained

from that state
• at is the action selected by the policy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 37 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

REINFORCE

• The policy gradient theorem can be generalize to
include a comparison between the action value and a
base value (baseline) which helps to reduce variance:
• With this, the updates are:

θt+1 = θt + α (Gt − b(st))∇θ log πθ(at |st)

• A natural candidate for b(s) is the estimate of the value
function V̂ (st ;φ), where φ are the parameters of the
value function

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 38 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

REINFORCE Algorithm

Initialize the weights of the policy (θ) and of the value
function (φ)
repeat

Generate an episode s0,a0, r1, s1, . . . , sT−1,aT−1, rT
following π
for each step in the episode t = 0,1, . . . ,T − 1 do

Gt ← return since time t
φ← φ+ β(Gt − V̂ (st ;φ))∇φV̂ (st ;φ)

θ ← θ + αγt (Gt − V̂ (st ;φ))∇θ log πθ(at |st)
end for

until convergence

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 39 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Actor-Critic

• Although the REINFORCE algorithm learns a policy
and a value function, the value function serves as a
baseline and not as a critic
• As any Monte Carlo method the learning process tends

to be slow
• A temporal difference algorithm can be built by

changing the step with the complete return that uses
REINFORCE with a single step:

θt+1 = θt + α
(

Gt − V̂ (st ;φ)
)
∇θ log πθ(at |st)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 40 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

One-step Actor-Critic Algorithm

• Gt for a single step can be replaced by: Q̂(s,a;φ) or
rt+1 + γV̂ (st+1;φ)

• In the first case, we end up with the Advantage function:

Â(s,a) = Q̂(s,a)− V̂ (s)
which tells us how much there is improvement over the
average of that state (extra reward obtained with action
a):

θt+1 = θt + α(Q̂(st ,at)− V̂ (st))∇θ log πθ(at |st)

= θt + αÂ(st ,at)∇θ log πθ(at |st)

• In the second case, we end up with the TD-error, which
can be seen as an unbiased estimate of the advantage
function:
θt+1 = θt + α(rt + γV̂ (st+1;φ)− V̂ (st ;φ))∇θ log πθ(at |st)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 41 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

One-step Actor-Critic Algorithm

Initialize the weights of the policy (θ) and of the value
function (φ)
repeat

Initialize s (initial state of the episode)
I ← 1
while s in not a terminal state do

a ∼ πθ(·|s)
Take action a, observe s′, r
δ ← r + γV̂ (s′;φ)− V̂ (s;φ)
φ← φ+ αφδ∇φV̂ (s;φ)
θ ← θ + αθIδ∇θ log πθ(at |st)
I ← γI
s ← s′

end while
until Convergence

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 42 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions:Trust-Region Methods

• The policy gradient update can be described as:

∇θJ(πθ) = E

[∞∑
t=0

γt∇θ log πθ(at |st)Aπθ(st ,at)

]

• We can use a “surrogate” objective function (TRPO):

J(θ′) = Eπθ

[
πθ′(a|s)

πθ(a|s)
Aπθ(s,a)

]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 43 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions:Trust-Region Methods

• One problem with importance sampling is that small
differences between the distributions can become large
values in the gradient
• We can use a bound that depends on the

Kullback-Leibler distance between the two policies to
induce πθ′ ∼ πθ:

J(θ′) = Eπθ

[
πθ′(a|s)

πθ(a|s)
Aπθ(s,a)

]
s.t. Eπθ [KL(πθ||πθ′)] ≤ δ

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 44 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions:Trust-Region Methods

• As an alternative, we can constrain the values to be
within certain bounds (PPO):

J(θ′) = Eθ
[
min(rt (θ

′)Ât , clip(rt (θ
′),1− ε,1 + ε)Ât)

]
where rt (θ

′) =
πθ′ (at |st)
πθ(at |st)

and clip constrains the value of
rt (θ
′) to be within the 1− ε,1 + ε limits.

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 45 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions: Deterministic Policy

• Another possibility is to learn a deterministic policy
(µ(s))
• As previously seen the Policy Gradient Theorem says

that:

∇θJ(πθ) = E

[
T−1∑
t=0

∇θ log πθ(at |st)
T−1∑
i=t

r(st ,at)

]

• Where the last sum can be replaced by the action-value
function Q, expressed in a simplified form as:

∇θJ(πθ) = E [∇θ log πθ(a|s)Qπ(s,a)]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 46 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deterministic Policy Gradients

• To improve the policy, in general, a maximization greedy
strategy is used: µt+1(s) = argmaxaQµt

(s,a)

• This is problematic in continuous action spaces as we
need to do a global optimization at each step
• Instead, we can move the parameters of the policy (θ) in

the direction of the gradient of Q: ∇θQµt
(s, µθ(s))

• Each state may suggest a different direction, so we can
average them by taking the expected value with respect
to the state distribution ρµ(s):

θt+1 = θt + αEs∼ρµt

[
∇θQµt

(s, µθ(s))
]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 47 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deterministic Policy Gradients

• Applying the chain rule:

θt+1 = θt + αEs∼ρµt

[
∇θµθ(s)∇aQµt

(s,a)|a=µθ(s)
]

• The deterministic policy gradient theorem says that:

∇θJ(µθ) = Es∼ρµ
[
∇θµθ(s)∇aQµ(s,a)|a=µθ(s)

]
where J(µθ) = E[

∑∞
t=1 γ

t−1r(st ,at)]

• This can be used in different actor-critic algorithms

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 48 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deterministic Policy Gradients

• For instance, using SARSA as critic, involves the
following steps:

δt = rt + γQρ(st+1,at+1)−Qρ(st ,at) (TD-error)
ρt+1 = ρt + αρδt∇ρQρ(st ,at) (update Q)
θt+1 = θt + αθ∇θµθ(st)∇aQµ(st ,at)|a=µθ(s) (update µ)

• Using Q-learning as critic, involves replacing the
TD-error by:

δt = rt + γQρ(st+1, µθ(st+1))−Qρ(st ,at)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 49 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deep Deterministic Policy Gradients

• DQN works with discrete actions, however, in many
domains, it is more natural to have continuous actions
• Deep Deterministic Policy Gradients (DDPG), is a

model-free RL algorithm for continuous actions that
combines DPG with DQN
• It follows the same strategy as DQN (experience replay

and a frozen target network) but in an actor-critic
scheme
• It keeps four networks (2 for actor and 2 for critic):

1 Policy (actor): π : S → A
2 Action-value function approximator (critic)

Q : S × A→ R

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 50 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Deep Deterministic Policy Gradients

• Episodes are generated following a behavior policy,
which is a noisy version of the objective function:
πb(s) = π(s) + N(0,1)

• The critic is trained with DQN but the objectives (yt) are
evaluated using the actions generated by the actor, i.e.:
yt = rt + γQ(st+1, π(st+1))

• The actor is trained with a mini-batch gradient descend
with a deterministic policy function

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 51 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DDPG Algorithm

Randomly initialize critic Qθ(s,a), actor µφ(s) and target
networks Q′θ′(s,a) and µ′φ′(s) with weights θ′ ← θ and
φ′ ← φ
for episode=1 to M do

Receive initial observation state st
for t=1 to T do

Select at = µφ(st) +Nt according to current policy
Execute at and observe rt and st+1
Store transition (st ,at , rt , st+1) in B
DDPG Algorithm (continue)

end for
end for

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 52 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

DDPG Algorithm (continue)

Sample a random minibatch of N transitions (si ,ai , ri , si+1)
Set yi = ri + γQ′θ′(si+1, µ

′
φ′(si+1))

Update critic by minimizing the loss:
L = 1

N
∑

i(yi −Qθ(si ,ai))2

Update the actor policy using the sampled policy gradient:

∇φJ(µφ) ≈ 1
N

∑
i

∇φµφ(s)∇aQµ
θ (s,a)|a=µφ(s)

Update the target networks:

θ′ ← τθ + (1− τ)θ′ and φ′ ← τφ+ (1− τ)φ′

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 53 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Extensions: Maximum Entropy
• In RL the randomness in the selection of the actions

defines the exploration mechanism, which can be
defined in terms of a probability distribution and
measured with entropy
• As the policy function converges, the entropy decreases
• The maximum entropy approach adds an entropy term

called the entropy bonus:

∇θ log πθ(at |st)(Gt − V̂ (st ; w) + η∇θH(πθ(at |st)))

which prevents the agent to converge too fast and
promotes the agent to take less predictive actions,
where:

H(π(a|s)) = −
∑

a

π(a|s) log π(a|s) = Ea∼π(·|s)[− log π(a|s)]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 54 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Soft-Actor Critic (SAC)

• An off-policy algorithm for continuous spaces that uses
an entropy regularizer in π and Q
• Tries to tackle two of the main problems of DRL: (i) High

sample complexity and (ii) Brittle convergence that
needs a careful tuning of hyperparameters
• The next state actions are taken from the current policy
• Uses the reparameterization trick with a squashed

Gaussian policy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 55 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Soft-Actor Critic (SAC)

• The Bellman equation changes from:

Qπ(s,a) = Es′∼P,a′∼π
[
r(s,a, s′) + γQπ(s′,a′)

]
• To:

Qπ(s,a) = Es′∼P,a′∼π [r(s,a, s′) + γ(Qπ(s′,a′) + αH(π(·|s′)))]

Qπ(s,a) = Es′∼P,a′∼π [r(s,a, s′) + γ(Qπ(s′,a′)− α log π(a′|s′))]

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 56 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Soft-Actor Critic (SAC)

• The policy maximizes Vπ which becomes:

Vπ(s) = Ea′∼π [Qπ(s,a)− α log π(a|s))]

• Which makes use of the reparamaterization trick:
Rewrite the expectation so the distribution from which
we take the gradient is independent of the parameter θ
• Squashed Gaussian policy: Uses tanh to ensure that

actions are bounded to a finite range

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 57 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

SAC Algorithm

Initialize parameters θ, φ1, φ2
repeat

Observe state and select action a ∼ πθ(a|s)
Execute a, observe next state s′, reward r , and terminal
signal ts
Store in replay buffer D ← D ∪ {(s,a, r , s′, ts)}
for each gradient step do

Randomly sample a minibatch of transitions,
B = {(s,a, r , s′, ts)} from D
(1) Compute targets for the Q functions
(2) Update Q functions by one step gradient descent
(3) Update policy function by one step gradient ascent
(4) Update target networks

end for
until convergence

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 58 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

SAC Algorithm (recent) - details

1 Compute targets for the Q functions (uses the min of
two Q’s):

y(r , s′, ts) = r+γ(1−ts)(min
i=1,2

Qφtarg,i (s
′, â′)−α log πθ(â′|s′))

where â′ ∼ πθ(·|s′)
2 Update Q functions by one step gradient descent

(MSE):

∇φi

1
|B|

∑
(s,a,r ,s′,ts)∈B

(Qφi (s,a)− y(r , s′, ts))2, for i = 1,2

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 59 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

SAC Algorithm (recent) - details

1 Update policy function by one step gradient ascent:

∇θ
1
|B|

∑
s,∈B

(min
i=1,2

Qφi (s, âθ(s))− α log πθ(âθ(s)|s)

where âθ(s) is a sample from πθ(·|s) with
reparameterization and squashed values

2 Update target networks:

φtarg,i ← ρφtarg,i + (1− ρ)φi for i = 1,2

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 60 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

The reparameterization trick (used in VAE)
If we take the gradient, w.r.t. θ of an expectation:

∇θEp(z)(fθ(z)) = ∇θ
[∫

z p(z)fθ(z)dz
]

=
∫

z p(z) [∇θfθ(z)] dz
= Ep(z) [∇θfθ(z)]

The gradient of the expectation is equal to the expectation of
the gradient.
If the density depends on θ:

∇θEpθ(z)(fθ(z)) = ∇θ
[∫

z pθ(z)fθ(z)dz
]

=
∫

z ∇θ [pθ(z)fθ(z)] dz
=
∫

z fθ(z)∇θpθ(z)dz +
∫

z pθ(z)∇θfθ(z)dz
=
∫

z fθ(z)∇θpθ(z)dz + Ep(z) [∇θfθ(z)]

We may not have an analytic solution for the first term.

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 61 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

The reparameterization trick

• The reparameterization trick allows us to rewrite the
expectation over actions, which depends on θ, into an
expectation over noise, that does not depend on θ:

Ea∼πθ [Qπθ(s,a)− αlogπθ(a|s)]

Eξ∼N [Qπθ(s, ãθ(s, ξ))− αlogπθ(ãθ(s, ξ)|s)]

where

ãθ(s, ξ) = tanh(µθ(s) + σθ(s)� ξ), ξ ∼ N (0, I)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 62 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Distributed Schemes

• Several approaches have been used to design
distributed schemes to scale up the DRL algorithms
• Here we will review some of them:

1 A3C
2 Ape-X
3 R2D2

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 63 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

A3C

• Experience replay was used to avoid highly correlated
data and create random samples
• However, it requires large storage capacity and it is

applicable to off-policy algorithms
• A3C proposes to learn from multiple agents in parallel,

considering that each agent will have different
experiences (no need for a replay memory)
• A3C runs on a “standard” CPU with several cores

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 64 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

A3C

• Different policies are tried in different threads with
parallel updating
• Each agent has its own copy of the environment,

evaluates its gradient and shares the network that
evaluates the loss function
• Eligibility traces are used in forward view
• The policy and value functions are updated after tmax or

when reaching a terminal state

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 65 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

A3C

They tried different options:
• One-step asynchronous Q-learning
• One-step asynchronous SARSA
• N-step asynchronous Q-learning with eligibility traces
• Asynchronous Actor-Critic with advantage function

(A3C or asynchronous advantage actor-critic)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 66 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

A3C Algorithm

In practice:
∇θ′ logπ(at |st ; θ

′)(Rt − V (st ; θv)) + β∇θ′H(π(at |st ; θ
′)) where

H means entropy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 67 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Ape-X

• Ape-X generates data in parallel, uses prioritized
experience replay and a single learning agent
• Uses a centralized experience replay memory
• Combines data from actors that have different

exploration policies, which increases diversity in the
examples
• Uses Double Q-Learning with eligibility traces and a

dueling network architecture
• For all the elements in the batch the loss function is:

lt (θ) =
1
2

(Gt −Q(st ,at ; θ))2

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 68 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Ape-X

With:

Gt = rt+1 + γrt+2 + . . .+ γn−1rt+n + γn

double-Q bootstrap value︷ ︸︸ ︷
Q(st+n, argmaxaQ(st+n, a; θ); θ−)︸ ︷︷ ︸

multi-step return

where:
• θ− are the parameters of the target network. If the

episode ends before the n steps it is truncated. The
actors use ε−greedy with different ε values

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 69 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Ape-X Algorithm

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 70 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

Ape-X Performance

• They found that increasing the number of actors
improves performance (more experience)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 71 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

R2D2

• Recently people have incorporated LSTMs to deal with
partial information
• Recurrent Replay Distributed DQN (R2D2) trains

recurrent networks with a distributed experience replay
• Similar to Ape-X (prioritized distributed replays) and

n−step double Q-Learning (with n = 5), generating
experience from 256 actors, but includes a layer of
LSTM after the convolutional layers
• Instead of storing the transition tuples (s,a, r , s′),

sequences of fixed size (80) of (s,a, r) tuples are stored
with overlaps of adjacent sequences every 40 steps

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 72 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Deep Reinforcement Learning

R2D2 Performance

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 73 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Go

• Compared to Chess, it has more legal movements per
position (≈ 250 vs. ≈ 35) and more movements per
game (≈ 150 vs. ≈ 80)
• Is difficult to define an adequate value function
• AlphaGo combines Deep Learning, Monte Carlo Tree

Search (MCTS), Supervised and Reinforcement
Learning
• Modifies MCTS using value functions
• Defines (and learns) several networks: the policy

network using supervised learning, the Monte Carlo
simulations network, and the value function network

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 74 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• Learns from self-play through policy iteration:
Evaluation and improvement of the policy
• Uses MCTS to select actions and a single CNN
• MCTS runs a simulation until a leaf node of the current

search tree (instead to running until a terminal state)
• The inputs to the CNN are tensors of 19× 19× 17,

representing 17 planes of binary attributes (8
represents the stones of the player, 8 from the opponent
player and 1 indicating the color of the player’s turn)
• The network learns: fθ(s) = (p, v), with p = Pr(a|s) and

v = probability of wining from the current position

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 75 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• In the search tree each node has the following
information: {N(s,a),W (s,a),Q(s,a),P(s,a)}, where:
• N(s,a) how many times it has been visited
• W (s,a) the total value function
• Q(s,a) the average value function (Q(s,a) = W (s,a)

N(s,a))
• P(s,a) the a priori action probability function (what the

network learns)

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 76 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• At each step an action is selected:
at = argmaxa(Q(st ,a) + U(st ,a))
where:

U(s,a) = cP(s,a)

√∑
b N(s,b)

1 + N(s,a)

• MCTS is used to improve the policy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 77 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• The CNN has 41 convolutional layers which at the end
is divided into two:

1 One branch generates 362 outputs (192 + 1) that gives
the probability of a movement (Prob(a|s)) at each place
in the board + pass (don’t do anything)

2 The other branch generates a single output that
estimates the probability of winning from the current
positions (v)

• The network was trained using batches of random
examples taken from 500 thousand games with the best
current policy
• Each 1,000 training steps the new network is tested and

if it improves certain threshold it is used

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 78 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• It was trained with 4.9 millions of self-play and took
roughly three days
• Each move from each game is selected by running

MCTS for 1,600 iterations (roughly 0.4 seconds per
move)
• The network weights are updated over 700,000

batches, each one with 2,048 positions
• At each position MCTS is executed guided by the

network
• MCTS outputs a policy (π) with the probabilities of each

move which is used to improve the policy

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 79 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

• The network is trained to maximize the similarity
between the prediction p and the policy π obtained with
MCTS and to minimize the error between the prediction
of who is going to win v and the actual result z
• The loss function is:

l = (z − v)2 − πT logp + c||θ||2

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 80 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

AlphaGo Zero

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 81 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Deep RL and Robotics

• Besides games, the other area that has received
considerable attention with DRL is robotics
• It has been applied to robotic arms, mobile robots,

drones, and autonomous vehicles
• We are going to illustrate some examples

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 82 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Making sense of vision and touch:
Self-supervised learning of multi-modal
representations for contact-rich tasks

Combines multi-modal information to predict the optical flow
contact and alignment

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 83 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Efficient adaptation for end-to-end
vision-based robotic manipulation

Re-trains a learned model to adjust to the changes in the
environment

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 84 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

BADGR: An autonomous self-supervised
learning-based navigation system

Self-supervised, receives information from the environment
and learns a predicted model of relevant events

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 85 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Variational end-to-end navigation and
localization

Uses three cameras and an abstract route and decides how
to navigate or how to follow a route

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 86 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Learning robust control policies for
end-to-end autonomous driving from

data-driven simulations

Uses a simulator to predict images/scenarios in order to
train the system

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 87 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Deep RL

• Deep Reinforcement Learning is a fast growing
research area
• The “natural” applications are games and robotics

where there are great expectations for the future
• DRL has been also used in Natural Language

Processing
• DRL requires, as DL, robust algorithms, be more data

efficient, consume less computational resources,
provide explanations of its results, ...

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 88 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Deep RL

On-going work include:
• Transfer Learning (different rewards, different dynamics,

different state-action spaces)
• Use additional knowledge (causal models, reward

shaping, curriculum learning)
• Inlude humans in the learning loop (traces, feedback)
• How to deal with sparse rewards
• Life-long learning
• Combine with LLM
• ...

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 89 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

References

• R. Sutton y A. Barto (2018). Reinforcement Learning: An
Introduction. MIT Press (2a. edition).

• Csaba Szepesvari (2010). Algorithms for Reinforcement
Learning. Morgan & Claypool Publishers. Synthesis Lectures
on Artificial Intelligence and Machine Learning. R.J.
Brachman y T.G. Dietterich (editors).

• D.P. Bertsekas, J.N. Tsitsiklis (1997). Neuro-Dynamic
Programming. Athena Scientific.

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 90 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

On-line Courses

• Additional material to the book of Sutton and Barto:
http://incompleteideas.net/book/the-book-2nd.html

• Reinforcement Learning. D. Silver:
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

• Deep Reinforcement Learning. S. Levine and others:
http://rail.eecs.berkeley.edu/deeprlcourse/

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 91 / 93

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Tools and Resources

• OpenAI Gym:
1 https://gym.openai.com/
2 https://github.com/openai/gym
3 https://towardsdatascience.com/reinforcement-learning-

with-openai-d445c2c687d2
4 https://medium.com/@ashish fagna/understanding-

openai-gym-25c79c06eccb
• Mujoco:

1 http://www.mujoco.org
2 http://www.mujoco.org/book/

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 92 / 93

https://gym.openai.com/
https://github.com/openai/gym
https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2
https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2
https://medium.com/@ashish_fagna/understanding-openai-gym-25c79c06eccb
https://medium.com/@ashish_fagna/understanding-openai-gym-25c79c06eccb
http://www.mujoco.org
http://www.mujoco.org/book/

Deep
Reinforcement

Learning

Eduardo
Morales, Hugo
Jair Escalante

Function
approximation

Deep
Reinforcement
Learning

Applications:
Games and
Robotics

Applications: Games and Robotics

Tools ans Resources

• Stable baselines:
1 https://pypi.org/project/stable-baselines/
2 https://github.com/hill-a/stable-baselines
3 https://stable-baselines.readthedocs.io/en/master/

• Animal AI:
1 http://animalaiolympics.com/AAI/
2 https://github.com/beyretb/AnimalAI-Olympics

Eduardo Morales, Hugo Jair Escalante (INAOE) Deep Reinforcement Learning 93 / 93

https://pypi.org/project/stable-baselines/
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/
http://animalaiolympics.com/AAI/
https://github.com/beyretb/AnimalAI-Olympics

	Function approximation
	Deep Reinforcement Learning
	Applications: Games and Robotics

