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Abstract 

Modern cellular networks allow users to transmit information at high data rates, 

have access to IP-based networks deployed around the world, and access to 

sophisticated services. In this context, not only is it necessary to develop new radio 

interface technologies and improve existing core networks to reach success, but 

guaranteeing confidentiality and integrity during transmission is a must. The 

KASUMI block cipher lies at the core of both the f8 data confidentiality algorithm 

and the f9 data integrity algorithm for Universal Mobile Telecommunications 

System networks. KASUMI implementations must reach high performance and 

have low power consumption in order to be adequate for network components. 

This paper describes a specialized processor core designed to efficiently perform 

the KASUMI algorithm. Experimental results show two orders of magnitude 

performance improvement over software only based implementations. We describe 

the used design technique that can also be applied to implement other Feistel-like 

ciphering algorithms. The proposed architecture was implemented on a FPGA, 

results are presented and discussed. 
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1. Introduction 

The nature of the information that flows throughout modern cellular 

communications networks has evolved noticeably since the early years of the first 

generation systems, when only voice sessions were possible. With today’s 

networks it is possible to transmit both voice and data, including e-mail, pictures 

and video. The importance of the security issues is higher in current cellular 

networks than in previous systems because users are provided with the 

mechanisms to accomplish very crucial operations like banking transactions and 

sharing of confidential business information, which require high levels of protection. 

Weaknesses in security architectures allow successful eavesdropping, message 

tampering and masquerading attacks to occur, with disastrous consequences for 

end users, companies and other organizations. 

 

Not only does the Universal Mobile Telecommunications System (UMTS) standard 

provide advanced communications services, it also includes the means to 

guarantee high levels of confidentiality and integrity of information as well as the 

authentication of each entity engaged in a communications session. The answer to 

the security challenge is the development of a sophisticated mutual authentication 

protocol [1], and the f8 confidentiality algorithm and the f9 integrity algorithms 

based on the KASUMI block cipher [2, 3, 4]. 



 

 

As stated in [5], solutions to implement lightweight cryptology are strongly needed. 

This becomes more relevant in mobile applications, where performance and cost 

are particularly important issues. There are basically three types of software and 

hardware platforms to implement cryptographic algorithms: a) Software 

implementations using general purpose processors, b) embedded software 

implementations (such as smart cards), and c) implementations using dedicated 

hardware (ASIC, FPGA). The authors in [5] also state that one possible solution 

that combines the flexibility of software-based implementations and the 

performance of custom hardware architectures to the efficient implementation of 

cryptographic algorithms is to develop optimized processor architectures by 

customizing both the processor’s instruction set and its micro-architecture. Thus, 

on the basis that some algorithms implemented in hardware achieve higher 

performance than the corresponding software codification and that software allows 

implementing complex functions, this paper describes a solution strategy to the 

problem of the efficient implementation of the KASUMI-based UMTS security 

functions by means of a combination of hardware and software modules. At a 

glance, the experimentation work is based on the hypothesis that it is possible to 

implement in hardware the most performance demanding component of both the f8 

and f9 algorithms, i.e. the KASUMI block cipher; attach this hardware module as a 

functional unit to a general purpose processor, extending its instruction set to 

exploit the new hardware, and then build the whole algorithms in software.  Results 

show two orders of magnitude performance improvement over software only based 

implementations. The results also show that the proposed extension achieves the 



 

higher throughput/area ratio that other reported architectures due to the efficient 

reutilization of the optimized two-round ciphering datapath. Thus, the proposed 

architecture offers a good alternative for implementing the KASUMI algorithm. 

2. UMTS’ security architecture 

According to the specifications, the security architecture is made up of a set of 

security features and security mechanisms [1]. A security feature is a service 

capability that meets one or several security requirements. A security mechanism 

is an element or process that is used to carry out a security feature. Two of the 

most important UMTS´s security features are: Integrity and confidentiality. The 

algorithm defined to perform the confidentiality tasks is called f8. The mechanism 

that carries out the integrity security feature is based on an UMTS Integrity 

Algorithm (UIA) which in turn is based on the f9 algorithm.  

 

Figure 1 illustrates the structure of the f8 algorithm. Several instances of the 

KASUMI block cipher are organized in a so called Output Feedback (OFB) mode 

[6]. Each block cipher generates 64 bits of the whole output keystream and 

forwards its output to the input of the following block cipher, subject to its 

modification by a XOR operation with a counter and a static value. 

The input parameter LENGTH indicates the length of both the keystream and the 

plaintext stream. The parameter BEARER identifies to each radio bearer among 

those associated with each user; this input value avoids the use of the same 

keystream for encryption/decryption in every radio bearer.  

 



 

Figure 2 shows the internal structure of the f9 algorithm. It is based on a series of 

KASUMI block ciphering modules interconnected in a variant of the Cipher Block 

Chaining (CBC) mode [6]. The algorithm combines the 64-bit intermediate outputs 

of all of the block ciphers by using XOR operations, and, lastly, applies the 

KASUMI algorithm to this sum. The 64-bit output of this final process is truncated 

to 32 bits to obtain the MAC-I value. 

3. KASUMI algorithm description 

KASUMI is based on a previous block cipher called MISTY1 [3]. MISTY1 was 

chosen as the foundation for the 3GPP ciphering algorithm due to its proven 

security against the most advanced methods to break block ciphers, namely 

cryptanalysis techniques. In addition, MISTY1 was heavily optimized for hardware 

implementation. KASUMI has a Feistel structure and operates on 64-bit data 

blocks under control of a 128-bit encryption key K [1]. KASUMI has the following 

features: it performs 8 rounds of ciphering, the input plaintext is the input to the first 

round, ciphertext is the last round's output, K is used to generate a set of round 

keys {KLi, KOi, KIi} for each round I, each round computes a different function, as 

long as the round keys are different, and the same algorithm is used both for 

encryption and decryption. 

 

As can be seen in Figure 3, the KASUMI block cipher has a different setup for the 

functions within rounds. For odd rounds the round-function is computed by 

applying the FL function followed by the FO function. For even rounds FO is 

applied before FL. FL, shown in Figure 3.d, is a 32-bit function made up of simple 



 

AND, OR, XOR and left rotation operations. FO, depicted in Figure 3.b, is also a 

32-bit function having a three-round Feistel organization which contains one FI 

block per round. FI, see Figure 3.c, is a non-linear 16-bit function having itself a 

four-round Feistel structure; it is made up of two 9-bit substitution boxes (S-boxes) 

and two 7-bit S-boxes. Figure 3.c shows that data in the FI function flow along two 

different paths: a nine-bit long path (thick lines) and a seven-bit path (thin lines). 

Notice that in Feistel structures, such as the ones used in this algorithm; each 

round's output is twisted before being applied as input to the following round. After 

completing eight rounds KASUMI produces a 64-bit long ciphertext block 

corresponding to the input plaintext block. 

 

Several proposals have been published previously that use different approaches to 

implement KASUMI in hardware, ranging from reuse techniques, addition of 

internal registers to reduce critical path and pipelined designs [7-13]. After 

analyzing these proposals it is clear that there is an important and unavoidable 

tradeoff between performance and complexity in terms of area, thus the goals of 

this work are twofold. First, to reach a good balance between high performance 

and low complexity during the implementation of KASUMI and second, to present 

the methodology used to design a specialized functional unit attached to a RISC 

processor. 

4. Proposed architecture and hardware implementation 

An extension was made to a MIPS-based processor core to support block 

ciphering according to the KASUMI algorithm. A new functional unit was added to 



 

the datapath and four specialized new instructions were defined to control the 

extended unit. To prove this concept, the use of a complex core to carry out the job 

is feasible, but the time needed to understand the core’s internals and conceive a 

way to extend it increases noticeably, thus the simplicity of the source code was a 

key factor to make the final decision. The processor core chosen for this work is 

the MyRISC core [14], which models a MIPS R2000 32-bit processor with a five-

stage pipeline structure. It is important to mention that this same approach can be 

used to integrate the proposed extension to other RISC type processors. 

4.1 Processor organization 

Figure 4 shows the organization of the proposed extension to the MyRISC core. 

The part above the thick horizontal line corresponds to the initial RISC processor 

core as it is distributed. The components lying below the thick line correspond to 

the KASUMI extension, which carries out the processing corresponding to two 

rounds. The modules that store and generate data operands are located in the 

processor’s Instruction Decode (ID) stage, whereas the modules that perform 

encryption operations belong to the Execute (EX) stage. 

4.2 The extended register file 

The new functional unit contains ten 32-bit registers that store the data it 

processes. Extended instructions move data from/to integer registers to/from a 

register within this new register file. Figure 5 shows the organization of this data 

unit. Registers 0 and 1 store the plaintext block the KASUMI functional unit works 

with; after the ciphering process the registers store the ciphertext block produced. 



 

The 32 most significant bits of the block are stored in register 0, whereas register 1 

stores the 32 least significant bits. The 128-bit encryption key K is split into four 32-

bit parts and stored in registers 2 to 5. Registers 6 to 9 store the ciphering 

constants used along with the encryption key to generate the set of round keys 

KLi,KOi,KIi for each round i. There is no need to preload the array of constants 

since these values are automatically stored every time the RESET signal is 

asserted. 

 

Any of the first six registers within the extended register file can be synchronously 

written by specifying its address and the value to store, in the same way as for 

integer registers. Registers 0 and 1 can be written in parallel to store the ciphertext 

block produced by the block ciphering modules. These two kinds of writing can not 

be accomplished simultaneously. The array that stores the encryption key K 

(registers 2 to 5) is synchronously rotated upwards to compute the appropriate 

round keys for the next two rounds. This is also true for the array that stores the 

ciphering constants (registers 6 to 9). The only kind of writing allowed occurring at 

the same time as the rotation of the arrays is the parallel writing of registers 0 and 

1. The register file asynchronously outputs the contents of the ten internal 

registers. An additional output issues the contents of a specific register indicated 

by an input address line in an asynchronous fashion as well.  

4.3 The forwarding unit 

This module allows the KASUMI functional unit to use correct and up-to-date 

values of the plaintext block and the encryption key. The extended processor 



 

allows different instructions that modify the first six registers to be executing along 

the pipeline. The forwarding unit receives values from the KASUMI register file and 

from different pipeline stages and determines if the values stored in registers are 

old, in which case the unit outputs the new values before they are actually written 

in the extended register file. This unit makes its decision based on input control 

signals and register address lines coming from either the stages in the integer 

pipeline or the modules comprising the KASUMI functional unit. The forwarding unit 

outputs the plaintext block sent to the extended register file most recently, or the 

ciphertext block computed most recently, directly to the ID/EX pipeline register. 

The outputs corresponding to the encryption key are used to generate the next two 

sets of round keys. 

4.4 The ciphering datapath 

This module is parallel to the EX stage of the processor’s datapath and performs 

the encryption process using the block issued by the forwarding unit and the round 

keys computed by the key generation unit. It carries out an odd round followed by 

an even round of the KASUMI algorithm in four steps: K1, K2, K3 and K4, where 

each step takes one clock cycle to complete.  

 

The strategy followed to design this module is shown in figure 6. The manipulation 

strategy considers a pair of consecutive rounds; an odd round followed by an even 

round. It changes the structure of the pair without altering its effects, adds 

components that balance the structure and discovers a design pattern that 

replicates. This pattern then turns into the basic building block that is implemented 



 

once and then reused until completion of the ciphering process. Figure 6.a shows 

two reordered FO blocks, while figure 6.b shows the result of expanding the two 

FO blocks and splitting the 32-bit XOR gate located between the two FO blocks 

into two 16-bit XOR gates and “unfolding” the datapath comprising the upper FO 

function block’s output, the two 16-bit XOR gates and the lower FO function block. 

Notice that both, the 32-bit R0 input and the 32-bit R2 output, are now split into two 

16-bit lines. Figure 6.c shows the result of joining the two FO function blocks to 

highlight the parallelism between each pair of FI function blocks. Some 16-bit XOR 

gates with one zero input are added along the datapath in certain places so that 

the datapath can be divided in three structurally similar sections each with two PI 

blocks. The final ciphering datapath for the two rounds is shown in figure 7, where 

each pair of PI blocks from figure 6.c is grouped into the so called dpFI blocks. This 

reordering process was originally proposed in [7], were a special purpose reuse-

based architecture for implementing the KASUMI algorithm was described. The 

architecture exploits reutilization of components to implement the eight rounds 

required by the algorithm.  

 

In spite of this multicycle operation, the ciphering datapath is not intended to work 

in a pipelined fashion. This means that an instruction that uses the ciphering 

datapath is not allowed to enter the K1 module until the previous instruction has left 

the K4 module. In the KASUMI functional synchronous registers are indicated by 

grey boxes. When the ciphering process reaches the K3 module it commands the 

KASUMI register file to rotate the arrays storing the encryption key and the 

ciphering constants, by means of a control signal indicated by a dashed line in 



 

figure 4, in order for the next two sets of round keys to be available in the next two 

clock cycles, when a new instruction enters K1. During the K4 step the 

corresponding module bypasses the computed ciphertext block to the forwarding 

unit to override the block stored in registers and make the new one available as the 

plaintext block to process in the next clock cycle. A control signal indicated by a 

dashed line is also bypassed to help the forwarding unit to determine the correct 

value of the block. When the ciphering instruction leaves the K4 module it enters 

the pipeline’s memory access stage (MEM) where, in the case of KASUMI 

instructions, the ciphertext block just computed is actually written into registers 0 

and 1 within the extended register file. Meanwhile, a new KASUMI ciphering 

instruction can start with the K1 step. 

4.5 The key generation unit 

The key generation unit outputs two sets of round keys ({KL1,KO1,KI1} and 

{KL2,KO2,KI2}) and stores them into the ID/EX pipeline register to be issued to the 

ciphering datapath during the next clock cycle. This unit receives as inputs the four 

32-bit words comprising the encryption key K from the forwarding logic and the four 

32-bit words storing the ciphering constants from the extended register file. Figure 

8 shows the organization of the key generation unit.  

4.6 The extended instructions 

Four instructions were added to the MIPS instruction set to control the extended 

KASUMI functional unit. Instruction formats for the four instructions are shown in 

Figure 9. The instructions are described next. 



 

The kxor1 instruction 

It carries out the operation Rs⊕Rt, where Rs and Rt are integer registers. This 

instruction uses the integer EX and MEM pipeline stages and saves the result in 

the extended KASUMI register file at the entry addressed by the four least 

significant bits of KRd during the integer WB stage. Its mnemonic is 

kxor1 KRd, Rs, Rt. 

The kxor2 instruction 

It carries out the operation Rs ⊕ KRt, where Rs is an integer register and KRt is a 

register in the extended KASUMI register file. This instruction uses the integer EX 

and MEM pipeline stages and saves the result in the extended KASUMI register 

file at the entry addressed by the four least significant bits of KRd during the 

integer WB stage. Its mnemonic is kxor2 KRd, Rs, KRt. 

The kxor3 instruction 

It carries out the operation Rs ⊕ KRt, where Rs is an integer register and KRt is a 

register in the extended KASUMI register file. This instruction uses the integer EX 

and MEM pipeline stages and saves the result in the integer register addressed by 

Rd during the integer WB stage. Its mnemonic is kxor3 Rd, Rs, KRt. 

The k2rnd instruction 

It carries out the operations corresponding to a sequence of an odd round and an 

even round of the KASUMI block cipher. It does not need explicit operands; it uses 

the outputs of the forwarding logic and the key generation unit. A sequence of four 



 

k2rnd instructions performs the whole KASUMI algorithm. k2rnd is a multicycle 

instruction whose execution phase is actually made up of four cycles: K1, K2, K3 

and K4. Only after a k2rnd instruction has finished with cycle K4, the next k2rnd 

instruction will enter K1. During the MEM stage this instruction issues the 

computed block to the extended register file in order for it to be stored in registers 0 

and 1. Since this operation is synchronous, the block is actually written when the 

instruction enters the WB stage. Its mnemonic is k2rnd. 

4.7 Details about the execution of extended instructions 

Figure 10 illustrates the pipelined execution of the instructions making up the 

encryption process. The operands of the instructions are carefully chosen to show 

how the extended processor deals with special execution conditions. The first six 

kxor1 instructions load the plaintext block and the encryption key into the extended 

registers. The next four k2rnd instructions perform the encryption process using the 

operands stored by the previous instructions. Notice that the address of the target 

register in instruction 1, which is 0, equals the address of the first source register in 

instruction 2. For integer instructions this would cause a data hazard and the 

bypassing of the value computed by instruction 1 in the EX stage to the ID stage of 

instruction 2 during the third clock cycle. However, for the instructions in figure 9 

the bypassed value is ignored by the integer forwarding logic since the target 

register of instruction 1 is an extended register, not an integer register as the 

source register of instruction 2. This situation is called a false data hazard and is 

handled by the processor by appropriately setting a control signal. The same 

situation occurs during cycles 4 and 5. A true data hazard occurs during the eighth 



 

cycle because the first k2rnd instruction needs to compute the two sets of round 

keys and, at this time, the encryption key K has not been completely stored. 

However, the forwarding logic in the KASUMI functional unit overcomes this 

problem. This module receives the bypassed data signals from the kxor1 

instructions in the EX, MEM and WB stages of the integer pipeline and issues them 

to the key generation unit to produce the round keys needed in the next cycle. The 

KASUMI forwarding logic ignores any bypassed signal issued by an instruction 

different from kxor1 and kxor2. Note that the overlapped execution of a k2rnd 

instruction (10) and an integer instruction (11) is allowed. This situation does not 

produce structural hazards since the integer MEM and WB stages do not share 

any module with the corresponding MEM and WB stages in the extended 

functional unit. When a k2rnd instruction, e.g. the instruction 7, enters K1 a no-

operation integer instruction enters EX in the integer portion of the processor’s 

pipeline.  The number of cycles elapsed since instruction 7 starts execution until 

instruction 10 leaves the execution stage is 16 cycles.  

5. Performance evaluation 

The number of instructions needed to implement the KASUMI block cipher in 

software, using the standard MIPS32 instruction set, is much higher than the 

number of extended instructions needed when the proposed extension is used.  

The C code for KASUMI included in [3] is made up of five functions: FI(), FO(), 

FL(), KeySchedule() and Kasumi(). This code is suitable to carry out a thorough 

study concerning the number of instructions executed by a compiled program. The 

source code is compiled using the C cross-compiler provided by the Software 



 

Development Environment (SDE) for MIPS-based products toolkit from MIPS 

Technologies [15], which is actually a built of GNU’s C compiler. The compiler is 

instructed, with the -Os option, to enable all the optimizations intended to reduce 

code size and generate the shortest executable program. This executable program 

is then disassembled using the objdump utility, which displays information from 

object files and is part of the GNU’s set of binary utilities (Binutils). 

 

The result of the study is summarized in tables 1-5. The instructions making up 

each module are counted, special constructs like loops, control transfer statements 

and function calls are identified and a precise counting of executed instructions is 

carried out for each of these constructs. The last entry of the tables provides the 

exact number of instructions the MIPS processor executes for the corresponding 

function. The number of instructions required to perform the KASUMI algorithm is 

given by adding the counts for the top level modules Kasumi() and KeySchedule(), 

i.e. 1540 + 915 = 2455 instructions. For the proposed approach, the number of 

cycles elapsed since instruction 7 starts execution until instruction 10 leaves the 

execution stage is 16 clock cycles. A total number of 26 clock cycles are needed to 

carry out the whole ciphering process including the storage of the plaintext block 

and the encryption key into the extended register file. In spite of the transfer 

overhead, that can be avoided by exploiting instruction reordering; this approach 

allows reducing the number of instructions required by two orders of magnitude 

when compared with a software only implementation, at the expense of the 

addition of a compact functional unit. The proposed extension was implemented 

using a Virtex-II FPGA device from Xilinx. It requires 448 slices and can operate at 



 

a maximum frequency of 96.33 MHz. Thus, considering a latency of 16 clock 

cycles and assuming that the processor can operate at the same frequency that 

the extension unit, the proposed architecture can achieve a throughput of 385 Mbs. 

 

Other architectures for the KASUMI algorithm have been reported. In [9], the 

authors report two architectures that implement logic for only one round, i.e. the FO 

and the FL function blocks. The first architecture, called Type 1, iterates over these 

two components eight times until completion of the process, feeding the design’s 

output back to its input at the end of each iteration, sacrificing performance in the 

interests of achieving low hardware complexity. The Type 2 architecture contains a 

four-stage inner-round pipelined FO module that results in an increased operating 

frequency and an improved throughput, by a factor of four. The two-round 

architecture described in [10] takes advantage of both inner- and outer-round 

pipeline techniques to decrease the period of the clock and increase the 

throughput. Inner-round registers are negative edge-triggered, whereas outer-

round registers are positive edge-triggered; consequently, the execution time of 

each round is one clock cycle. The pipelined design allows this circuit to process 

two blocks simultaneously, with an initial latency of eight cycles. The S-boxes in 

this architecture are implemented with combinational logic. The two architectures 

reported in [11] are similar to that described in [10]. The authors look to reduce the 

area required by implementing a two-round iterative architecture. An interesting 

fact about this design is that the S7 and S9 S-boxes are implemented as 

combinational logic and, alternatively, mapped to embedded memory blocks within 

the FPGA. There are registers at the end of each round, making the architecture to 



 

have a total completion latency of 8 clock cycles when the S-boxes are 

implemented as combinational modules, and 40 cycles when the S-boxes are 

mapped to embedded memory blocks; this due to the inner-round pipeline stages 

introduced by the registered outputs of the synchronous memory blocks. This two-

round design is not intended to work in a pipelined fashion. It is possible to 

manipulate the structure of the KASUMI block cipher, by means of aggressive 

simplifications, to get inexpensive datapaths with long latencies that carry out the 

ciphering process. The work reported in [12] presents the application of a 

simplification technique to design two KASUMI architectures with latencies of 56 

and 32 cycles, respectively. A third architecture with a latency of 8 cycles is 

mentioned, and its results provided, but the architecture is not fully described. A 

crypto processor that consists of a 32-bit RISC processor block and coprocessor 

blocks dedicated to the AES, KASUMI, SEED, triple-DES private key crypto 

algorithms and ECC and RSA public key crypto algorithm is described in [13]. The 

32-bit RISC type processor controls the dedicated crypto block and performs the 

interface operations with external devices such as memory and an I/O bus 

interface controller. The custom processing blocks are connected to the processor 

by a 64-bit bus. 

 

Table 6 shows a performance comparison of the proposed extension against other 

reported architectures. As the focus of this paper is to describe the KASUMI 

extension and the general approach of how this can be integrated into a RISC 

processor, the area data shown in the table includes only the area required by the 

extension itself, i.e. no other parts of the processor are considered. As seen from 



 

the table, the number of hardware resources required by the extension is similar to 

those required by the architectures that implement the KASUMI algorithm using a 

reuse or hybrid approach. Note that, apart from the pipelined architecture 

described in [10], the proposed extension achieves the highest throughput/area 

ratio due to the efficient reutilization of the optimized two-round ciphering datapath. 

 

6. Conclusions 

This paper proposed a processor-based approach to the problem of efficiently 

implementing the KASUMI algorithm. The general approach consisted of three 

phases. First, the design of a high performance hardware module that performs 

two rounds of the KASUMI algorithm. Second, the addition of a functional unit to a 

RISC processor core intended to be used in embedded environments. Third, the 

extension of the instruction set of the processor to exploit the capabilities of the 

new hardware. Replacing a long sequence of arithmetic and logical instructions by 

dedicated hardware reduces code size by two orders of magnitude and, 

consequently, the number of clock cycles needed for completion of the ciphering 

process. The addition of a specialized hardware module for encryption avoids 

requesting that service from an external coprocessor. It is important to mention that 

the processor used was selected to validate the approach because of its simplicity; 

but this general approach can be used to add a similar extension unit to other 

RISC-like processors. 

 



 

The proposed approach scheme is a good alternative when the security functions 

must coexist with other operations as the functional unit for encryption does not 

interfere with a number of other custom modules the processor core may contain 

for different purposes. The extension can be used to implement other KASUMI-

based algorithms, such as A5/3 and GEA3. This approach can also be adapted to 

implement other Feistel-like encryption algorithms.  
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Figure 1. The f8 confidentiality algorithm. 
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Figure 2. The f9 integrity algorithm. 
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Figure 3. The KASUMI block cipher. 
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Figure 4. The MyRISC MIPS-based processor core with the extended KASUMI 

functional unit. 
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Figure 5. The organization of the extended KASUMI register file. 
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a) b) c) 

Figure 6. Sequence of steps to design a reusable datapath for two rounds of the 

KASUMI block cipher. 
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Figure 7. Pipelined datapath for the two-round sequence. 



30 

 

Figure 8. The Key generation unit. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 9. The extended Instructions format: a) kxor1 b) kxor2 c) kxor3 d) k2rnd. 
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Figure 10. Pipelined execution of a sequence of extended instructions. 
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Length: 34 instructions 
 Load instructions: 4 
 Store instructions: 0 
 Arithmetic and logic instructions: 29 
 Control transfer instructions: 1 
Function calls: 0 
Loops: 0 
If-then-else structures: 0 
Total number of instructions executed by the function: 34 

 

Table 1. Instruction analysis for the FI() function. 
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Length: 51 instructions 
 Load instructions: 9 
 Store instructions: 3 
 Arithmetic and logic instructions: 35 
 Control transfer instructions: 4 
Function calls: 3 
 Call 1 - FI(): 34 
 Call 2 - FI(): 34 
 Call 3 - FI(): 34 
Loops: 0 
If-then-else structures: 0 
Total number of instructions executed by the function: 153 
 

Table 2. Instruction analysis for the FO() function. 
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Length: 24 instructions 
 Load instructions: 2 
 Store instructions: 0 
 Arithmetic and logic instructions: 21 
 Control transfer instructions: 1 
Function calls: 0 
Loops: 0 
If-then-else structures: 0 
Total number of instructions executed by the function: 24 
 

Table 3. Instruction analysis for the FL() function. 
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Length: 70 instructions 
 Load instructions: 14 
 Store instructions: 14 
 Arithmetic and logic instructions: 36 
 Control transfer instructions: 6 
Loops: 1 
 Loop 1: 
  Iterations: 4 
  Instructions in the body of the loop: 18 
  Functions calls: 4 
   Call 1 - FL(): 24 
   Call 2 - FO(): 153 
   Call 3 - FL(): 24 
   Call 4 - FO(): 153 
   Total number for the four functions: 354 
  Length of the body of the loop including the four 

functions: 372 
  Total number of instructions executed by the loop: 1488 
Number of instruction outside the loop: 52 
Total number of instructions executed by the function: 1540 
 

Table 4. Instruction analysis for the Kasumi() function. 
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Length: 138 instructions 
 Load instructions: 23 
 Store instructions: 21 
 Arithmetic and logic instructions: 90 
 Control transfer instructions: 4 
Loops: 3 
 Loop 1: 
  Iterations: 8 
  Instructions in the body of the loop: 9 
  Total number of instructions executed by the loop: 72 
 Loop 2: 
  Iterations: 8 
  Instructions in the body of the loop: 14 
  Total number of instructions executed by the loop: 112 
 Loop 3: 
  Iterations: 8 
  Instructions in the body of the loop: 88 
  Total number of instructions executed by the loop: 704 
 Total number of instructions executed by the three loops: 888 
Number of instruction outside the loop: 27 
Total number of instructions executed by the function: 915 
 

Table 5. Instruction analysis for the KeySchedule() function. 
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Proposal Approach 

Clock 
cycles 

per block 

Area 
(slices) 

Frequency 
(MHz) 

Throughput 
(Mbps) 

Hardware    
efficiency 

(kbps/slice) 
Works in [9] Reuse 8 650 20.00 110.00 169.23 
 Hybrid 32 1100 33.00 234.00 212.73 
Works in [10] Pipeline 8 9476 56.00 3584.00 378.22 
 Hybrid 8 3452 54.00 432.00 125.14 
Works in [11] Reuse 40 749 35.35 70.70 94.39 
 Pipeline 40 2213 37.72 2414.08 1090.86 
Works in [12] Reuse 56 368 68.13 77.86 211.58 
 Reuse 32 370 58.06 116.12 313.84 
 Reuse 8 588 33.14 265.12 450.88 
Work in [13] Hybrid NA 1174 71.00 568 483.81 
This work Hybrid 16 448 96.33 385.32 860.08 

 
Table 6. Performance comparison. 
 


