

©2001 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.”

Extended period LFSR using variable TAP function
Ariel Molina-Rueda, Fernando Uceda-Ponga, Dr. Claudia Feregrino Uribe

Instituto Nacional de Astrofísica Óptica y Electrónica,
Luis Enrique Erro 1, Tonanzintla, Puebla. AP 72000. México
{arielm, fuceda, cferegrino}@ccc.inaoep.mx

Abstract—This paper presents a method to extend the period of a Lin-
ear Feedback Shift Register (LFSR) by proposing an algorithm to generate
primitive polynomials, this is archived by using basic LFSR with a maxi-
mum period equal to a prime number. The period extension achieved with
our proposed method is statistically robust and has a very long extension of
the LFSR period, as long of (2120)!(2N − 1) for a 127 bit length register.
Also by separating the phases of setup and running in the algorithm avoid
losing the characteristically speed of the LFSRs.

Index Terms—

I. INTRODUCTION

In recent years, the increasing use of the Internet and the
growing exchange of digital information have lead to the neces-
sity of reinforcing security. Currently, one of the most widely
used techniques for security is cryptography. It provides the
tools to build the most modern security pro tocols used for
the transmission of information. Cryptography comes from the
Greek words κρνπτωoσ and γραειν which means “hidden”
and “writing” respectively, its definition is: “The art of writing
with secret key or in an enigmatic manner”. A cryptosystem is
a quintuple (M,C,K,E,D), where: M represents the set of
all messages without ciphering (that is clear text or plaintext),
C represents the set of all possible ciphered messages, K rep-
resents the set of keys that the cryptosystem may use, E is the
set of ciphering transformations or functions family that can be
applied to M to obtain an element of C. There is a different
transformation Ek for each possible value of k. D is the set of
deciphering transformations. All cryptosystems must obey the
following condition: Dk(Ek(m)) = m. There are two types of
cryptosystems:

1. Symmetrical or private key, they employ the same key k
to cipher and to decipher. Its main inconvenience is that
the key must be known by the sender and by the receiver,
so, the transmission of the key must be secure, and

2. Asymmetrical or public key, they use a double key
(kp, kP), kp is known as private key and kP is known as
public key. One of them is used for the ciphering E trans-
formation and the other one for the deciphering D trans-
formation. In many cases, they are interchangeable. kP

must not allow to compute kp. They can be used for secure
communications, since just one key travels by the insecure
channel.

In practice, a combination of both schemes is used. A mes-
sage is codified using a symmetric algorithm and a session key
that must be different each time. The session key is ciphered us-
ing asymmetric cryptography. The only way these keys are se-
cure is that there must not be dependence between a key and the
next one, that means they are random. So, there is an interest in
random numbers in cryptography. It is practically impossible to
generate really random number sequences; pseudorandom num-

Fig. 1. LFSR of length L

ber generators are used instead. All pseudorandom generators
produce finite and periodic sequences of numbers employing
arithmetic operations and/or logic ones. These sequences are as
long as possible before they can be repeated and that they can
pass the statistical test of randomness. The cryptosystems that
exploit the idea of the pseudorandom generators are the stream
ciphers. The cryptographically random generators follow this
property: from a piece of an arbitrary long sequence, it is com-
putationally impossible the problem of predicting the following
bit of the sequence. The requirement is that the complete se-
quence can not be computed from a piece of it, and at the same
time, it can be completely regenerated from the seed. Pseudo-
random generators allow ciphering messages of arbitrary length
combining the message with the sequence using the exclusive-
OR operation byte to byte. Linear Feedback Shift Registers,
LFSR, are the basis for many of the sequence generators for
stream ciphers. This paper aims to extend the period of a LFSR
in order to make them more secure.

The Linear Feedback Shift Register (LFSR) was first pre-
sented by Golomb [3] as pseudorandom number generator. In
the present time they are used for many hardware key generators
for the following reasons:

1. LFSR are easily implemented in hardware
2. LFSR archive high throughtput
3. LFSR produce sequences with long periods
4. LFSR produce have good statistical properties
5. LFSR can be easily analized with abstract algebra

II. DISSECTING AN LFSR

An LFSR is defined here by using Fig 1. An LFSR which has
a length L will have L elements or delay elements, in Fig. 1 this
are labeled s0, s1, ..., sL−1; each one with the capacity to hold
one bit of information. A clock modulates this LFSR, with each
time unit of this clock the following occurs:

1. The content of element s0 is an output bit of the LFSR’s
sequence.

18th International Conference on Electronics, Communications and Computers

0-7695-3120-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CONIELECOMP.2008.8

129

2. The contents of element si moves to si−1, for all i in
1, · · · ,L− 1

3. The contents of element sL−1 is calculated by adding
modulus 2, the contents of the rest of the elements. Note
that the hardware implementation of this addition is the
XOR function.

An LFSR as in Fig 1 is noted as 〈L,C(x)〉 being L the length
and C(x) the connection polynomial:

C(x) = 1 + c1x + c2x
2 + · · ·+ cLxL ∈ Z2[x]

If all the the elements of the LFSR are set to zeroes, the output
sequence will be all zeroes, for this reason, this set up sequence
is excluded. For all other 2L − 1 set up sequences, the LFSR
will eventually loop though some, or all of its states, and this
is related with the kind of connection polynomial [4]. If an
irreducible polynomial is used, the period of the LFSR will be
n, such that

n
∣∣2L− 1

so n will be a divisor of the maximum period. Moreover, if
a primitive polynomial is used, a maximal period is archived
for non-zero initialization. Generation of primitive polynomi-
als is a hard task involving factorization of primes [4]. This
paper is focused on the generation of irreducible polynomials
instead of primitive ones, but using some mathematical proper-
ties, so that calculation of primitives is not necessary but instead
all irreducibles generated are in fact, primitives. Thus reducing
drastically the computing power needed.

A. Statistical properties of sequences

Let S be an sequence that is generated by a maximum-length
LFSR of length L, this is a sequence generated when a primitive
polynomial is used as a connection polynomial:
• Let k be an integer, 1 ≤ k ≤ L, and let s0 be any subse-

quence of S of length 2L + k − 2. Then each non-zero
sequence of length k appears exactly 2L−k times as a sub-
sequence of s0. Furthermore, the zero sequence of length k
appears exactly 2L−k − 1 times as a subsequence of s0. In
other words, the distribution of patterns having fixed length
of at most L is almost uniform.

• S satisfies Golomb’s randomness postulates.
1. In the cycle sN of S, the number of 1’s differs from the

number of 0’s by at most 1.
2. In the cycle sN , at least half the runs have length 1, at

least one-fourth have length 2, at least one eighth have
length 3, etc., as long as the number of runs so indicated
exceeds 1. Moreover, for each of these lengths, there are
(almost) equally many gaps and blocks.

3. 3. The autocorrelation function C(t) is two-valued. That
is for some integer K,

N · C(t) =
N−1∑
i=0

(2si) · (2si+t − 1)

=
{ N if t = 0

K if 1≤ t≤N − 1

That is, every sequence is also a pn-sequence (pseudonoise
sequence).

Focusing on the irreducible polynomials. As it was said the
period will be a divisor of 2L − 1. In the case 2L − 1 is a prime
number, then n can only be 1 or 2L − 1, it cannot be 1, so it
is 2L − 1. So a way to get maximum period of an LFSR with-
out generating primitives was just shown, generate irreducibles
such that 2L− 1 is prime, and this is a considerably easier task,
it is possible to generate them pseudorandomly and check irre-
ducibility within Z2[x] with this algorithm:

is_irreducible(f(x))
u(z)<-x
for i=1 to floor(m/2):
u(x) <- u(x)^2 (mod f(x))
d(x) <-mcd(f(x), u(x)-x)
if d(x) != 1 then return FALSE

return TRUE

Which uses the Euclidean algorithm for calculating the min-
imum common divisor:

IN two polynomials g(x);h(x) ∈ Zp[x].
OUT the greatest common divisor of g(x) and h(x).

1. While h(x) 6= 0 do the following:
2. → Set r(x) = g(x) mod h(x), g(x) = h(x), h(x) =

r(x).
3. Return(g(x)).

Also note that the lenght of the LFSR will be L, such that
2L − 1 is prime, this primes are known as Mersenne primes,
and there is an ongoing crusade to find them [1]. The lengths
are known, and the first Mersenne primes are 3,7,31, ... corre-
sponding to L = 2,3,5, There are only 44 known Mersenne
primes until the writing of this paper[1]. In this paper the use of
prime 2127− 1 is discussed for an LFSR of length 127, but all
that is said is valid for all the other primes including Mersenne
primes not yet discovered and even non Mersenne primes, but
Mersenne primes are used for a simple illustration. There can
even exist a LFSR of length 32582657 corresponding to the
largest known Mersenne prime until today 232582657− 1 if that
could be possible.

Next is the part of obtaining those irreducible to use into the
LFSR as connection polynomials. This approach can be used to
generate a monic polynomial of degree m:

generate_irreducible(m)
Do{
f(x) = generate random coefficients for

a monic polynomial of deg. m.
(seed for this PRNG is part of
the user-provided key)

salir = is_irreducible(f(x))
}while not salir
return f(x)

Note that a monic is needed, otherwise it will not be of degree
m, also the constant coeficient must always be nonzero or the
polynomial will not be irreducible, it will be trivially divisible
by x.

x127 + x126 + x125 + · · ·+ x + 1

130

EXTENDED PERIOD LFSR USING VARIABLE TAP FUNCTION

In our case the degree is 127, so only 125 random bits are to
be generated, the bits for the initialization are received from the
user as a part of the key. When using different keys, different
polynomials are generated.

So, a number of polynomials is generated in an initialization
stage, in this partany pseudorandom number generator can be
used, it was chosen to use Blum Blum Shub[2], because is very
strong and the generated number are congruent with:

xi = (x2imod(p−1)(q−1)
0)modM

where M can be prime and also it is possible to calculate
any xi without storing, and can be calculated directly, this is a
good characteristic for further hardware implementations, still
a LFSR of 127 bit and a primitive tap function can be used in-
stead of the Blum Blum Shub generator for low hardware cost
implementations. A change the generator of this point have a
low effect on the security, our only compromise is the use of
a generator that accept user Key-Set or seed-password. This
compromise will difficult the task of cryptanalyst and provide
security. This is because the security relies in the output of the
LFSR that is being built and not on the internal PRNG initial-
izator. In this way, the security is also increased because the tap
polynomials will be scrambled in a pseudorandom way, so even
if the current tap is broken the attacker will not know which will
be the next tap (that’s the reason it is not recommened the use
of a simple counter as a seeder for the irreducible analyzer).

After this, a 127 bit LFSR is used, with an initialization vector
based on the key provided by the user. When the 2127− 1 bits
of the output sequence are depleted the connection polynomial
is reset with another one of those generated in the initialization
stage, and a different sequence is obtained, they have good sta-
tistical properties as Golomb has shown [1].

III. EXTENDING THE PERIOD TO THE MAXIMUM

The extension of the period is calculated by:

I(2127 − 1)

Where I is the total number of existing irreducible polyno-
mials which according to Sloane’s series A011260 is:

1339694357956450643556592942644756738

Which is approximately 2120.
If there are 2120 primitives and a total of 2127 then the prob-

ability to get a primitive when polynomials are generated ran-
domly is:

2120

2127
=

1
27

=
1

128
So on average it is expected that 128 polynomials are gen-

erated to obtain just one that is primitive and useable for our
purpose.

In order to further extend the period of the LFSR the poly-
nomials can be used in a permutated form, so each time the
polynomials are depleted, there will be chosen again but in a
different order, this will increase the period and is still statisti-
cal secure.

Fig. 2. Simplified Architecture Diagram

As result of the permutated use the addition of the max pos-
sible period is:

(2120)! · (2127 − 1)

This period is extremely large, so it is nowadays practically
impossible to have data input that long, even if the contents of
the whole internet are used as input.

IV. IMPLEMENTATION CONSTRAINS AND TESTS

This LFSR was created with the objective of using it as a re-
placement of the ordinary LFSR in secure generators, increas-
ing the global security of a stream cipher. Because of this por-
pouse, a practical implementation approach will be shown that
make de extended LFSR a black box with a behavior similar to
any other LFSR but with a larger period.

First of all the main architecture of our LFSR will be as the
one shown in Fig. 2 .

Due to memory constrains the maximum number of irre-
ducible polynomial will be determinated for the amount of
memory available, i.e for a 4MB of memory usage a number
of approximately 2,7488× 108 polynomials are possible, this
is aproximately 228.

This makes the LFSR period equals to (228)!(2127 − 1), this
is still very large and the memory usage is low according with
the actual memory availability. It shall be noted that this capac-
ity grows as memory avaiability becomes higer in the future.
Specifically for small devices

This black box LFSR was implemented in software as a test
of the viability. This implementation was made in Java 1.5 using
a command line setup to avoid CPU time consuming in graphics
environments, all modules was created as an independent class,
the LFSR and its tap function were made with integers.

The setup phase using a Blum Blum Shub Generator as the
random polynomial feeder was 14 seconds.

The average speed of this LFSR after the setup phase was
one bit every 0.01 seconds. That is 100bit/sec. The computer
used was an AMD Turion, at 1.6Ghz, running Windows. It
is important to mention that the process was restrained to use
only 4 Megabytes of RAM. This is described here as a proof-of-
concept and if implemented directly on hardware it could gain
up to a 100x increase in troughtput.

131

V. CONCLUSIONS

It has been shown how to increase the period of an LFSR in an
easy an viable way, if a low cost implementation is desired one
LFSR could substitute the Blum Blum Shub Generator. Even
with the implementation constrains, this LFSR can make stream
ciphers stronger due to period extension. Our proof-of-concept
java implementation on a PC, gave as result the generation of
100bit/sec for this extended LFSR. This throughtput can be in-
creased if implemented on a dedicated hardware architecture,
leading up to a 100x throughtput raise. The implementation on
hardware is left as future work.

REFERENCES

1. http://www.mersenne.org/.

2. L. B. M. Blum and M. Shub. A simple unpredictable
pseudorandom number generator. SIAM Journal on
Computing, 15:364-383, 1986.

3. S. Golomb. Shift Register Sequences. Aegean Park Press
(1982) reprint, Laguna Hills, California, 1967.

4. A. Menezes. Handbook of applied Cryptography. CRC
Press, 1997.

132

