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Abstract—In this paper, we propose a new algorithm
for mining frequent itemsets. This algorithm is named
AMFI (Algorithm for Mining Frequent Itemsets). This
algorithm compresses the data while maintaining the
necessary semantics for the frequent itemsets mining
problem and it is more efficient that traditional com-
pression algorithms. The AMFI efficiency is based on a
compressed vertical binary representation of the data
and on a very fast support count. AMFI performs a
breadth first search through equivalence classes. We
compare our proposal with an implementation using
PackBits algorithm.
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I. Introduction

Mining association rules in transaction datasets has
been demonstrated to be useful and technically feasible
in several application areas, particularly in retail sales [1]
and document datasets applications [2]. The management
and storage of large datasets have always been a problem
to solve. An interesting solution is to use compression
algorithms on the data because the presence or absence
of an item in a transaction can be stored in a bit. To find
an algorithm that compresses the data while maintaining
the necessary semantics for the frequent itemsets mining
problem is the goal of this work.

The form in which itemsets are represented is decisive
to compute their supports. Conceptually, a dataset is
a two-dimensional matrix where the rows represent the
transactions and the columns represent the items. This
matrix can be implemented in the following four different
formats [3]: Horizontal Item-List (HIL), Horizontal Item-
Vector (HIV ), Vertical Tid-List (VTL), and Vertical Tid-
Vector (VTV ). Many algorithms have been proposed using
vertical binary representations (VTV ) in order to improve
the obtaining process of frequent itemsets [3], [4], [5], [6].

We proposed an algorithm based on a breadth first
search through equivalence classes [7] combined with a
compressed vertical binary representation of the dataset.
This compressed representation, in conjunction with the
equivalence class processing, produces a very fast support
count and it produces a less expensive representation,
specially in large sparse datasets.

This paper is organized as follows: the next section is
dedicated to give some formal definitions; the third section

describes some compression algorithms including PackBits
method, the fourth section contains the description of
AMFI and the pseudo code of the algorithm; the exper-
imental results are discussed in the fifth section, and the
paper finalizes with the conclusion.

II. Preliminaries

Let I = {i1, i2, . . . , in} be a set of items. Let D be a
set of transactions, where each transaction T is a set of
items, so that T ⊆ I. An itemset X is a subset of I. The
support of an itemset X is the number of transactions in
D containing to X. If the support of an itemset is greater
than or equal to a given support threshold (minSup), the
itemset is called a frequent itemset (FI ). The size of an
itemset is defined as its cardinality; an itemset containing
k items is called a k-itemset.

For example, in Figure 1, if we have a support threshold
equal to three, the FI obtained are: {coke}, {diaper},
{beer} and {diaper, beer}.

id ı́tems
1 coke, milk
2 bread, diaper, beer
3 coke, diaper, beer
4 pan, diaper, beer
5 coke, milk, diaper

Fig. 1: Transactional datasets

The itemset space can be partitioned into equivalence
classes based on their common k−1 length prefix [7]. The
elements of equivalence classes with k − 1 length prefix
have size k (see Fig. 2).

Each equivalence class of level k − 1 generates several
equivalence classes at level k.

Most of the algorithms for finding FI are based on
the Apriori algorithm [8]. To achieve an efficient frequent
patterns mining, an anti-monotonic property of frequent
itemsets, called the Apriori heuristic, was formulated [8].
The basic intuition of this property is that any subset of
a frequent itemset must be frequent. Apriori is a breadth-
first search algorithm, with an HIL organization, that
iteratively generates two kinds of sets: Ck and Lk. The
set Lk contains the frequent k-itemsets. Meanwhile, Ck is
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Fig. 2: Equivalence classes

the set of candidate k-itemsets, representing a superset of
Lk. This process continues until a null set Lk is generated.

The set Lk is obtained by scanning the dataset and
determining the support for each candidate k-itemset in
Ck. The set Ck is generated from Lk−1 following the next
procedure.

Ck = {c | Join(c, Lk−1) ∧ Prune(c, Lk−1)} (1)

where:

Join({i1, i2, . . . , ik−1, ik}, Lk−1) ≡
〈{i1, . . . , ik−1} ∈ Lk−1 ∧ {i1, . . . , ik} ∈ Lk−1〉, (2)

Prune(c, Lk−1) ≡
〈∀s[(s ⊂ c ∧ |s| = k − 1) → s ∈ Lk−1]〉, (3)

The main problem about the computation of FI is
the support counting, that is, computing the number of
times that an itemset appears in the dataset. To choose a
compression algorithm suitable for data compacting and
later on to compute the FI is not an easy task.

III. Compression Algorithms

The compression of a transactional dataset can be per-
formed horizontally or vertically. Taking into account the
characteristics of the problem, horizontal compaction can
be a throwaway due to transactions being defined as sets of
items: the sets do not have repeated elements, for which no
redundancy is present for a compression algorithm be able
to work properly. When data are vertically represented,
a transactional identifier list or vector can be obtained
per every item. Then, to compute the support for an
itemset under this representation, it is required to intersect
a transactional identifier list from transactions associated
to each item.

Since the last mid-century, many compression algo-
rithms have been developed [9], [10], [11], [12], [13]. In
all lossless compression implementations, there is a trade-
off between computational resources and the compression
ratio. Often, in both statistical and dictionary-based meth-
ods, the best compression ratios are obtained at expenses

of long execution time and high memory requirements.
Statistical compressors are characterized by consuming
higher resources than dictionary based when they are
implemented in both software and hardware, however they
can achieve compression ratios near to the source entropy.
The most demanding task in this kind of algorithms is
the implementation of the model to get the statistics of
the symbols and to assign the bit string. Perhaps, the
most representative statistical method is the proposed by
Huffman [9] in 1952. In this algorithm a tree is built
according to the frequency of the symbols. All symbols
are placed at the leaves of the tree. The Huffman method
achieves compression by replacing every symbol by a
variable bit string. The bit string assigned to every symbol
is determined by visiting every internal node from the root
up to the leaf corresponding to the symbol. Initially the
bit string is the null string. For every internal node visited,
one bit is concatenated to the bit string, 1 or 0, depending
on the current visited node whether it is a right or left child
of its father. Symbols at longer branches will be assigned
larger bit strings.

In the dictionary-based methods, the most time-
consuming task is searching for strings in a dictionary,
which usually has hundreds of locations. Dictionary-based
algorithms are considered simpler to implement than
statistical ones but the compression ratio is lower. An-
other kind of compression algorithms, ad-hoc, that were
developed in early days of data compression are Run
Length Encoding-like (RLE) algorithms [14]. RLE takes
advantage of the presence of consecutive identical single
symbols often found in data streams. It replaces long runs
of repeated symbols with a special token and the length
of the run. This method is particularly useful for small
alphabets and provides better compression ratios when
symbols are correlated with their predecessors.

Selecting a compression method among the existent ones
is non-trivial. While one method may be faster, other
may achieve better compression ratio and yet another may
require less computational resources. Furthermore, due to
the nature of mining frequent itemsets, using these algo-
rithms for the transactional identifier list compression, the
semantics required for the intersection are lost, bringing
as a consequence the necessity of decompressing before
intersecting.

After a careful analysis of existing compression algo-
rithms, we concluded that RLE type of algorithms are
more suitable for compressing our data. In [15] several
variants of RLE algorithm are described, however, [16]
describes a variant that in our opinion, can adjust better
to the type of data managed here and it may compress
with higher compression rates besides allowing intersecting
without requiring decompression.

A. PackBits Algorithm

PackBits algorithm is a fast and simple compression
scheme for run-length encoding of data. A PackBits data
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stream consists of packets of one byte of header followed by
data. The header is a signed byte; the data can be signed
or unsigned.

In the following table, let n be the value of the header
byte as a signed integer.

Header byte Data following the header byte
0 to 127 (1 + n) literal bytes of data
0 to -127 One byte of data, repeated (1 + n)

times in the decompressed output

TABLE I: Data stream of PackBits

Note that interpreting 0 as positive or negative makes
no difference in the output. Runs of two bytes adjacent
to non-runs are typically written as literal data. It should
also be noted that there is no way, based on the PackBits,
data to determine the end of the data stream; that is to
say, one must already know the size of the uncompressed
data before reading a PackBits data stream to know where
it ends.

IV. Characteristic of AMFI Algorithm

A new algorithm for frequent itemsets mining is pro-
posed in this section. The efficiency of this algorithm is
based on a compressed vertical binary representation of
the data and on a very fast support count.

A. Storing the transactions

In our algorithm the transactions are represented as an
m x n matrix where m is the number of transactions and
n is the number of frequent items. We can denote the
presence or absence of an item in each transaction by a
binary value (1 if it is present, otherwise 0).

If the maximum number of transactions is not greater
than the CPU word size w (32 or 64 bits), the dataset can
be stored as a simple set of integers. However, a dataset
is normally much greater than the CPU word size. For
that reason, we propose to use an array of integers to
store the presence or not of each frequent item along the
transactions. It will be explained later on how to extend
these integer arrays to a frequent itemset.

Let M be the binary representation of a dataset, with n
items and m transactions. Retrieving from M the columns
associated to frequent items, we can represent each item
j as an integer array Ij where each integer has size w, as
follows:

Ij = {W1,j ,W2,j , . . . ,Wq,j}, q = dm/we (4)

where each integer of the array can be defined as:

Wk,j =
w∑

r=1

2w−r ∗M((k−1)∗w+r),j (5)

being Mi,j the bit value of item j in transaction i, in
case of i > m then Mi,j = 0.

B. Reordering of Frequent 1-itemsets

As other authors, in AMFI, we have used the heuristic
of reordering the frequent 1-itemsets in increasing support
order. This will cause a reduction of candidate sets in
the next level. This heuristic was first used in MaxMiner
[17], and has been used in other methods since then
[4], [18], [19], [20], [21], [22], [23]. In the case of our
algorithm, reordering frequent 1-itemsets contributes to a
faster convergence, as well as saving memory.

C. AMFI Algorithm

AMFI is a breadth-first search algorithm through equiv-
alence classes with a compressed vertical binary represen-
tation. This algorithm iteratively generates a list ECk.
The elements of this list represent the equivalence classes
of size k and have the format:

〈Prefixk−1, IAPrefixk−1
,SuffixesPrefixk−1

〉, (6)

where Prefixk−1 is the (k−1)-itemset that is common to
all the itemsets of the equivalence class, SuffixesPrefixk−1

is the set of all items j which extend to Prefixk−1, where j
is lexicographically greater than every item in the prefix,
and IAPrefixk−1

, is an array of non null integers that stores
the accumulated intersection (AND operation) of items
that belong to Prefixk−1. As frequent itemsets are larger,
the array IA will have lesser elements. The procedure for
obtaining IA is: Let i and j be two frequent items,

IA{i}∪{j} =
{(Wk,i & Wk,j , k) |(Wk,i & Wk,j) 6= 0, k ∈ [1, q]}, (7)

similarly, let the frequent itemset X and the frequent
item j

IAX∪{j} = {(b & Wk,j , k) |
(b, k) ∈ IAX , (b & Wk,j) 6= 0, k ∈ [1, q]}, (8)

This representation not only reduces the required mem-
ory space to store the integer arrays but also eliminates
the Join step described in (2).

In order to compute the support of an itemset X with an
integer-array IAX , the following expression is considered:

Support(IAX) =
∑

(b,k)∈IAX

BitCount(b) (9)

where BitCount(b) is a function that calculates the
Hamming Weight of b. The IA cardinality is reduced with
the increment of the itemsets size due to the downward clo-
sure property. It allows for improvement of the processes
(8) and (9).The AMFI algorithm pseudo code is shown in
Algorithm 1.

The ECGenAndCount function takes an equivalence
class of length k − 1 as argument and generates all the
equivalence classes of length k (Algorithm 2).
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Input: Dataset in binary representation
Output: Frequent itemsets

Answer = ∅1

L = {frequent 1-itemsets}2

forall i ∈ L do3

ECGenAndCount(〈{i}, Ii,Suffixes{i}〉, EC2)4

k = 35

while ECk−1 6= ∅ do6

forall ec ∈ ECk−1 do7

ECGenAndCount(ec, ECk)8

end9

Answer = Answer ∪ ECk10

k = k + 111

end12

end13

return Answer14

Algorithm 1: AMFI

Input: An equivalence class in
〈Prefix, IAPrefix, SuffixesPrefix〉 format

Output: The equivalence classes set generated

Answer = ∅1

forall i ∈ SuffixesPrefix do2

Prefix′ = Prefix ∪ {i}3

IAPrefix′ = IAPrefix∪{i}4

Suffixes′Prefix′ = ∅5

forall (i′ ∈ SuffixesPrefix) and (i′ > i) do6

if Support(IAPrefix′∪{i′}) then7

Suffixes′Prefix′ = Suffixes′Prefix′ ∪{i′}8

end9

end10

if Suffixes′Prefix′ 6= ∅ then11

Answer =12

Answer ∪ {〈Prefix′, IAPrefix′ , Suffixes′Prefix′〉}
end13

end14

return Answer15

Algorithm 2: ECGenAndCount

In line 2 of algorithm ECGenAndCount, all the items i
that form the suffix of the input equivalence class (ECk−1)
are crossed. In line 3 the prefixes Prefix′ of the equivalence
classes of level k are built by adding each suffix i to the
prefix of ECk−1. In line 4, the IA array associated to
each Prefix′ is calculated by means of AND operation
between the IA of ECk−1 and the Ii associated to the
item i (8). From lines 6 to 13, the suffix items j of
ECk−1, lexicographically greater than i, are crossed and
the support of the sets Prefix′ ∪ j is calculated.

D. Memory Considerations

There are four ways in which a dataset can be repre-
sented, two horizontal (HIL and HIV ) and two vertical

(VTL and VTV ). Most of the authors agree in the advan-
tages of the vertical storage over the horizontal because of
vertical storage allows to calculate the itemset support by
intersecting lists or arrays according to the case. Making
a decision from VTL and VTV representations is a non-
trivial task. Burdick, Calimlim and Gehrke [4] analyzed
these two vertical formats. They pointed out that the
memory efficiency of these representations depends on the
density of the dataset. Particularly, on 32-bit machines
the VTL format is guaranteed to be a more expensive
representation in terms of space if the support of an item
(or itemset) is greater than 1/32 or about 3%. In the
VTL representation, we need an entire word to represent
the presence of an item versus the single bit of the VTV
approach.

In the compressed IA array of the AMFI algorithm, a
pair of integers for each one of the simple (uncompressed)
VTV format is required. As the AMFI representation
includes pairs of words only for non-null integers, the
memory overhead for this representation is higher than
the simple VTV if the support of an item (or itemset) is
greater than 1/2. Furthermore, considering a dataset of m
transactions on 32 bit machines and an item (or itemset)
with a support sup, a simple VTV requires m/8 bytes
of memory while AMFI, in its worst case when the item
(or itemset) transactions are sparsely distributed, requires
8∗min(m∗sup, m/32) bytes. If the sup decreases then the
memory consumption decreases too.

V. Experimental Results

Several experiments were carried out where our pro-
posed algorithm, AMFI, was compared against a version
that compresses the data using PackBits. Time consump-
tion and memory requirements were considered as mea-
surements of efficiency.

Experiments were developed with two newsitem
datasets and two synthetic datasets (Table II).

Transactions Items Count Avg. Length
El Pais 550 14489 173.1
TDT 8169 55532 133.5

Kosarak 990002 41935 8.1
Webdocs 1704140 5266562 175.98

TABLE II: Summary of the main datasets characteristics

Some of these datasets are sparse, such as El Pais, and
some, very sparse, such as Webdocs. Newsitems datasets
were lemmatized using the Treetagger program [24], and
the stopwords were eliminated.

The Kosarak dataset was provided by Ferenc Bodon
to FIMI repository [25] and contains (anonymized) click-
stream data of a Hungarian on-line news portal. The
Webdocs dataset was built from a spidered collection of
web html documents and was donated to FIMI repository
by Claudio Lucchese et al. TDT dataset contains news
(newsitems) data collected daily from six news sources in
American English, over a period of six months (January

2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008)

IEEE Catalog Number: CFP08827-CDR 
ISBN: 978-1-4244-2499-3 
Library of Congress: 2008903800 
978-1-4244-2499-3/08/$25.00 ©2008 IEEE 

 
 
337

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:42 from IEEE Xplore.  Restrictions apply. 



- June, 1998). The El Pais dataset contains 550 news,
published at El Pais (Spain) newspaper in June in 1999.

Our tests were performed on a PC with an Intel Core
2 Duo at 1.86 GHz CPU and 1 GB DDR2 RAM. The
operating system was Windows XP SP2. We considered
CPU+IO time (in seconds) at execution time for all
algorithms included in this paper.

In Figures 3, 4, 5 and 6, a comparison of memory con-
sumption by level is shown, meaning that the comparison
is done for frequent 1-itemsets, frequent 2-itemsets and so
on until frequent 6-itemset. We plot the values until level 6
in order to not overload the graphics, but the performance
is the same.

As it can be seen from the figures, the AMFI algorithm
requires less memory than the variant of PackBits as
the size of the FI increases. In level 1, AMFI consumes
more memory since it stores all the bytes while PackBits
compresses the bytes with equal value (as the datasets are
very sparse, see Table II, many bytes are equal to 0).

Fig. 3: Memory consumption (El Pais dataset)

Fig. 4: Memory consumption (TDT dataset)

As the levels increase, PackBits requires always to com-
press a constant amount of bytes, while AMFI will store
only the bytes that are different from 0, which diminish
fast due to the intersection operations.

In Figures 7, 8, 9 and 10 a comparison of execution
time with different supports is shown. As it can be seen,
AMFI algorithm not only requires less memory but also
is more efficient. This is mainly due to intersecting only

Fig. 5: Memory consumption (Kosarak dataset)

Fig. 6: Memory consumption (Webdocs dataset)

with the blocks different from 0 is faster than iterating two
compressed byte flows intersecting all the blocks.

Fig. 7: Time consumption (El Pais dataset)

VI. Conclusions

In this paper we have presented a compressed vertical
binary approach for mining FI. Our algorithm achieves
better performance than PackBits as much in consump-
tion of memory as in run time. It can be concluded that
although existing compression methods are good, they
are not always suitable for certain problems due to when
compressing the required semantic is lost.
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Fig. 8: Time consumption (TDT dataset)

Fig. 9: Time consumption (Kosarak dataset)

Fig. 10: Time consumption (Webdocs dataset)
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