

©2001 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.”

A Versatile Linear Insertion Sorter Based on a FIFO Scheme

Roberto Perez-Andrade, Rene Cumplido, Fernando Martin Del Campo, Claudia Feregrino-Uribe
Department of Computer Science

National Institute for Astrophysics, Optics and Electronics INAOE, Puebla, Mexico
{j roberto pa,rcumplido,fmartin,cferegrino}@inaoep.mx

Abstract

A linear sorter based on First In First Out (FIFO)
scheme is presented. It is capable of discarding the oldest
value, inserting the incoming data while keeping the values
sorted in a single clock cycle. This type of sorter can be used
as coprocessor or as module in specialized architectures for
order statistics filtering. The architecture is composed of
identical processing elements thus can be easily adapted to
any length according to specific application needs. The use
of compact identical processing elements results in a high
performance yet small architecture. Results of implement-
ing the architecture on a Field Programmable Gate Array
(FPGA) are presented and compared against other reported
hardware based sorters.

Keywords: Hardware sorters, Linear Sorters, FIFO

1. Introduction

Sorting is one of the most important operations used in
computers. Given their practical importance, algorithms for
sorting values have been the focus of extensive research re-
sulting on several algorithms proposed to address specific
problems. First, serial sorting algorithms were investigated,
then parallel sorting algorithms became a very active area
of research, finally models for parallel computations were
developed [1].

For certain applications like median filters, ATM (Asyn-
chronous Transfer Mode) switching, order statistics and, in
general, continuous data processing, sometimes software
only implementations of sorting algorithm do not achieve
the required processing speed [2]. In order to speed up the
sorting operation, some custom hardware architectures have
been proposed in recent years. The relatively simple logic
required for sorting and the inherent concurrency of the al-
gorithms have allowed to explore a number of custom ar-
chitectures in order to improve the performance obtained
by software implementations. Hardware sorters are evalu-

ated according to area requirements (number of Flip-Flops,
comparators, control logic, gates, LUTs, etc), processing
time (including latency and maximum operating frequency)
and power consumption. Hardware sorters can be grouped
in two kinds of architectures: sorting networks (including
some systolic architectures) and linear arrays. The main
idea behind sorting networks is to sort a block of data pass-
ing through a network of processing elements (PE) con-
nected in such way that individual values take their corre-
sponding place. Linear sorters are based on the idea that
data to be sorted come in a continuous stream one value at
a time, each value is inserted into its corresponding place in
a register group (register file) at the same time that one of
the stored values is deleted. This work is based on the latter
idea: sorting the values as they are introduced into the regis-
ter file, discarding the oldest value in the register file while
maintaining the values sorted in a single clock cycle. This
FIFO scheme can be used in applications that are continu-
ously processing data in serial fashion such as order statistic
filtering. This type of applications commonly require ac-
cessing a value from a specific position within a sorted ar-
ray, more than one value simultaneously, or even the whole
set of values in the array to perform parallel operations, thus
making traditional FIFO memories with a single output port
unsuitable. The proposed architecture for the insertion sort
algorithm has a FIFO-like behavior, i.e. discards the old-
est value when a new one arrives, while allowing flexible
access to its contents.

2. Related Work

Several hardware architectures for performing sorting al-
gorithms have been proposed. These architectures can be
grouped in two families according to the algorithm they use:
sorting networks and linear sorters. The sorting networks
are based on a network constituted by several PEs located
in the nodes of the network. The goal of each PE is to order
two input values in ascending (or descending) order by plac-
ing the larger (or smaller) value in a specific output. This
technique supposes that a block of data is available for being

IEEE Computer Society Annual Symposium on VLSI

978-0-7695-3170-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ISVLSI.2008.14

357

sorted in parallel fashion. Sorter networks can be pipelined
in order to reduce their critical path and latency, thus re-
sulting in a better throughput. The disadvantage of this ap-
proach is that the network can potentially require a large
number of PEs and, depending on the algorithm, several
clock cycles for sorting the whole block of data. Besides,
if one input value changes the whole block of data must be
resorted. The efficiency of these sorters can be measured by
its total size (numbers of PEs) and by its depth (maximum
number of PE from input to output).

Linear sorters are useful when sorting data streams,
where sorting must be carried out after each input value
is received. Linear sorters are composed of a group of
cells, each of them capable of deciding if an internal reg-
ister should hold its current value or update it, either using
the input value to the sorter or a value stored in adjacent
cells. The advantages of this approach are that it uses fewer
area resources and data are always sorted.

2.1. Sorting Networks

In [3], Batcher was the first to introduce the concept of
sorting networks. In this work he presented the odd-even
merging and bitonic networks. The odd-even merging net-
work consists of two networks that sort all the values con-
tained in odd and even positions separately, applying an in-
teractive rule. The bitonic network works similarly to the
odd-even, it merges two monotonic sequences, one in as-
cending order and the other in descending order. These two
monotonic sequences are built by sorting the input values
in ascending and descending lists, and being merged later.
The nodes of both networks are built using PEs. The odd-
even network can only sort a N fixed number of data. If
N changes, the network must be rearranged. For this rea-
son Kuo and Huang in [4] proposed a modification of the
odd-even sorting network. They proposed a network that
can sort any M input data that is smaller than N, which is
the maximum number of data that the netwotk can sort. In
their work [5] Tabrizi and Bagherzadeh use a different sort-
ing scheme. Basically, they use a tree as a network imple-
mented in an ASIC, where the leaves of the tree are the in-
puts and the main node is the output. This scheme works in
a parallel input and produces a serial output, thus requiring
several clock cycles to flush the tree after the beginning of
the process.

In [6] Hirschil and Yaroslavsky propose three different
sorting architectures. One of these architectures does not
work as a sorting network neither it sorts the elements, in-
stead it ranks the input data. This Parallel Rank Computer
(PRC) receives, in a parallel fashion, a vector of N numbers
and produces their ranks in two clock cycles. The rank of
each number is calculated by comparing every pair of num-
bers and summing the comparison values.

2.2. Linear Sorters

The other two sorting architectures proposed in [6] are
based on shift register architectures operating in a FIFO
scheme. One of these architectures, called Serial Rank
Computer (SRC), sorts a number according to the incom-
ing value and its calculated rank. The other architecture, a
Serial FIFO Sorter (SFS), stores an input vector of data in
the order that it is received. This scheme is different from
regular FIFO schemes as it keeps the data ordered by mag-
nitude, still data leave the sorter in a FIFO fashion.

A VLSI sorter implementation is presented in [2] by
Colavita et al. They propose a shift register architecture
based on a Basic Sorting Unit (BSU) which contains two
registers to store the data and an associated tag, a compara-
tor, and a small logic circuit. This implementation is able
to continuously process an input data stream while produc-
ing a sorted output data stream. The data stream is sorted
according to the tags preserving the order of words with
identical tags.

Chin-Sheng and Bin-Da Liu in [7] propose a sorter that
uses a column of N PE to progressively sort N data. These
PE are composed of two registers, and a Compare-Swap
Cell (CS), which is built by a comparator and a swap unit.
These PE are layout in cascade so their outputs are attached
to the inputs of their successors. The idea of the PE is to
allow the previous data being held by the PE or shifted to
the successor PE at each clock cycle. In [8] Lluı́s Ribas et
al. propose a register file (linear shifter) built on data-slice
cells. This scheme requires minimal control logic and it is
easily expandable. The idea of this sorter is based on the
insertion sorting algorithm, which for every unsorted value,
looks the right position in the sorted list in order to perform
the insertion of the unsorted value into its corresponding
place. This architecture only shifts values to one direction,
discarding the smallest value. The data-slice cell is com-
posed of a multiplexor, a register and a comparator, result-
ing in a compact and simple architecture. A similar sorting
scheme is proposed in [9]. In this work, the data contained
in the register file can be left o right shifted depending if the
value is going to be inserted or deleted. Both, the value to
be inserted and to be deleted, are specificated by the input
signal. To perform the insert or delete process, the cell must
perform four basic operations: shift right, shift left, load
and initialize. In the next section our proposed solution is
presented, it takes some ideas from previous works, espe-
cially from [8], but it has been modified to work in a FIFO
fashion.

3. Proposed Insert Sort Algorithm

The proposed linear sorter is based on the insertion sort
algorithm. This algorithm performs, for every unsorted

358

value, a procedure that looks for the appropriate position
in the sorted list to insert the input data [8]. The algorithm
is presented in the next pseudo-code:

function InsertSort
for each unsorted D {

i = 0;
while(i < n) and (D > R[i])) {

R[i] = R[i+1];
i = i+1;

} R[i-1] = D;
}end function;

The algorithm inserts incoming data in the vector R of
infinite length. However, in practice, this characteristic can
not be met, thus a deleting condition must be used. In [8],
the condition used for deleting is to erase the smallest value
stored, meanwhile in [9], the data to be erased is indicated
by an external input signal.

In the proposed architecture, a FIFO scheme is used i.e.
the oldest value is discarded, allowing for the incoming
value to be inserted in its corresponding position. In order
to achieve a FIFO-like operation, it is necessary to keep a
life period value for each sorted data. If the value is shifted,
then the corresponding life period value is shifted too. The
life period value is increased by one every time that a new
data is inserted. When the life period value has expired,
i.e. it reaches a value equal to the number of elements in
the array, the corresponding value is discarded, making an
empty space in the vector and thus allowing the insertion of
a new value. For this scheme, three different operations are
performed in order to keep the array sorted: shift the value
and life period value to the left, to the right, or to hold the
values. To know the direction the values should be shifted
to, every element in the array must know on which side, on
relation to itself, the value that is going to be discarded is
located. Also, it must know on which side the incoming
value must be stored.

This functionality can be achieved by creating and array
of PEs, called Sorting Basic Cell (SBC). The behavior of
a i-th SBC can be described by the four different functions
shown next, where CNT[i] represents the life period value
of the i-th SBC, R[i] the data stored on the i-th SBC, cnti is
a flag that indicates that life period value from a SBC to the
right has expired, D right and D left are the output values
to the right and left sides of the SBC respectively:

function SBC_SendData
D = Incoming Data;
if (R[i] < D){

D_right = R[i];
D_left = D;

}else{
D_right = D;
D_left = R[i];

}end function;

The SBC SendData function is in charge of sending to its
left and right neighbors the value it currently stores and the
incoming data, D left and D right SBC respectively. If the
first condition is met, it indicates that this SBC must send to
its right its current value (R[i]) and to the left the incoming
value else it must send to its left its current value and to the
right the incoming value.

function SBC_ResetPeriodLife
D = Incoming Data;
if(CNT[i] = 0) or ((R[i] < D) xor (cnti = 1)){

if (Ri < D) and not (R[i+1] < D){
CNT[i] = 0;

}
if not (Ri < D) and (R[i-1] < D){

CNT[i] = 0;
}

}end function;

The first condition of SBC ResetPeriodLife checks if the
CNT[i] value must be updated while the inner conditions
check for those cases where the SBC’s counter must be set
to zero. This action takes place when the incoming value
will be stored on the i-th SBC therefore setting the life pe-
riod value to zero is needed.

function SBC_UpdateValues
D = Incoming Data;
if(CNT[i] = 0) or ((R[i] < D) xor (cnti = 1)){

if (Ri < D){
R[i] = R[i+1];
CNT[i] = CNT[i+1];

}else{
R[i] = R[i-1];
CNT[i] = CNT[i-1];

}
} end function;

In the SBC UpdateValues function the first condition
checks if the R[i] value must be updated by with the value
coming from its left o right neighbor as indicated by the sec-
ond condition. Even though the first condition is the same as
the one in the shown in SBC ResetPeriodLife function, they
are separated because there is priority order, if both condi-
tions are met then only the SBC ResetPeriodLife function
should be performed.

function SBC_PropagateFlag
if(CNT[i] = 0){

cnti = 1;
} else{

cnti = 0;
}end function;

This final function, SBC PropagateFlag, checks if the
life period value of the SBC has expired. This flag, cnti, is

359

used by the functions as one of the conditions checked to
update the SBC.

In order to fulfill the FIFO sorting functionality, the
SBCs must be interconnected (figure 1) in a simple linear
structure, called register file. This linear structure can be
easily expandable as long as needed depending on the ap-
plication.

Figure 1. Register File.

For each incoming data D, one of these SBC’s must dis-
card its value. At the same time, all the SBC’s hold their
previous value, or store the value coming from the cell to
the left, or store the value coming from the cell to the right.
Only one clock cycle is needed to perform these actions
(discarding the oldest data, holding, right or left shifting).
Under this FIFO sorting functionality, there are three inser-
tion cases that are considered and solved by the SBC (shown
in figure 2, where the grey cell indicates the data to be dis-
carded) are:

1. The incoming value is inserted to the left of the cell
that discards its stored value. In this case data from
Ri to Rn−2 must be shifted to the right side and the
incoming data is inserted in Ri.

2. The incoming value is inserted to the right of the cell
that discards data its stored value. In this case data
from Ri to R3 must be shifted to the left side and the
incoming data is inserted in Ri.

3. The incoming value is inserted at same position of the
discarded value i.e. Ri. The rest of the cells hold their
values.

Figure 2. Insertion Cases.

It is important to emphasize that the proposed sorter dif-
fers from other sorters as it implements a FIFO-like scheme
where the oldest value in the register file is discarded to
make room to each incoming data.

4. Sorting Base Cell

The proposed SBC has a register with synchronous load
to store the data, a counter with synchronous reset and load
to store the period life of the data, a comparator, four 2-1
multiplexers and control logic, figure 3.

Figure 3. Architecture of the SBC.

This SBC control logic consist of four boolean equa-
tions, which control the register, the counter and the mul-
tiplexers. These equations can be viewed as representa-
tions of the conditions functions previously explained. The
equation 1 is used as a condition in SBC ResetPeriodLife
and SBC UpdateValues functions. This equation controls
when the register and the counter must take the neigh-
bor value, while the origin of this data (left or right side)
is selected by the equation 2, which is used in function
SBC UpdateValues. The function SBC ResetPeriodLife is
represented by equation 3, it indicates if the counter must be
set to zero. Finally, the equation 4 detects and propagates
if the life period value of one of the SBCs to the right has
expired as indicated by the SBC PropagateFlag function.

load = (pi ⊕ cnti+1) + cnti (1)

LR = (pi · load) (2)

reset = load · [(pi−1 · pi) + (pi · pi+1)] (3)

cnti = cnti+1 + cnt (4)

where pi is the comparator output as described by the
SBC SendData function. The signals pi+1 and pi−1 corre-
spond to the right and left SBC neighbors respectively and
cnti+1 is the flag coming from the SBC immediately to the
right. This signal helps to detect if the life period value of
one SBC to the right has expired. In order to perform cor-
rectly the insert sort algorithm, the left most pi+1 signal’s
value is always 1 and the right most pi−1 signal’s value is 0.

360

This can be viewed as the left most value having the largest
value while the right most has the smallest one. To ensure
proper behavior, all registers Ri must be initialized to zero,
while life counter values CNT must be initialized according
to CNT[i] = i.

Figure 4 exemplifies how the SBC’s control signals work
allowing the register file to perform the sorting algorithm.
This figure illustrates the three previously mentioned insert
cases in a 3 steps sequence. The first row contains the sorted
values currently stored in the register file, the second row
contains the corresponding life period values and following
rows contain the values of the control signals. The grey col-
umn indicates the data to be discarded, whose period life
value is 12. In this example there is a given sorted sequence
(figure 4.a). The first incoming value is D = 2 is inserted in
its corresponding position figure 4.b, then the second value
D = 18 is also inserted in its corresponding position fig-
ure 4.c and the final incoming value is D = 11 which is
placed in the SBC that just discarded its value.

Figure 4. Register File Example Functionality.

5. Results

For the purpose of validation and comparison against
other works, the proposed architecture was modeled us-
ing the VHDL Hardware Description Language and syn-
thesized with Xilinx ISE 8.2 targeted for a Virtex-II
XC2V3000 device. Table 1 summarizes the FPGA hard-
ware resource utilization and timing performance for the

proposed architecture and related sorters. Note that a direct
comparison between our proposed sorter and other sorters is
not possible because there is not another linear sorter which
performs the same functionality. Data for the Bitonic, Odd-
Even, Column, and Shifter sorters were taken from [8],
while data for the SFS, PRC, and SRC sorters were taken
from [6]. Even though the proposed sorter is not the fastest,
it is able to discard a value and to insert the new value in a
single clock cycle while maintaining the data sorted. Block
sorter on the other hand would require a large number of
clock cycles to sort the data even if a single value is re-
placed.

Table 2 shows a comparison of the proposed architecture
against other works in terms of the number of hardware el-
ements they require. In the table, n refers to the number of
data being sorted. The information for the other sorters is
taken from [8]. The linear shifter requires the least hard-
ware elements, followed by the column shifter. Although
the proposed architecture requires more hardware elements
that the column shifter, it is capable of sorting n values in as
many clock cycles, similar to the linear shifter. The bitonic
and the odd-even sorters require less time to sort the n val-
ues, however they require that all values to be sorted are
available at the same time, which is not always possible spe-
cially in applications that produce data in stream fashion,
also they require a larger number of hardware elements.

6. Conclusion

Sorting is one of the most important operations used in
computers. When implementing statistical signal process-
ing algorithms, it is commonly required to access values
from a sorted array in a number of different ways. Some
algorithms may require accessing the largest or smallest
value in the array, the value stored in a specific position,
or even values within a range. Additionally, as incoming
data are processed in a stream fashion, a FIFO like behav-
ior is required where the oldest value in the array has to
be removed before making room to any new value. In this
work a compact and efficient hardware implementation of
a linear sorter based on FIFO scheme was presented. The
architecture, composed of an array of identical processing
elements, implements the insert sort algorithm in a compact
an efficient way by performing a number of tasks in a sin-
gle clock cycle. The architecture can be easily adapted to
any length according to specific application needs and used
as coprocessor or as module to implement a register file in
specialized architectures. The architecture nature exploits
the parallel nature of the insert sort algorithm and achieves
excellent performance due to the use of identical processing
elements that perform a number of tasks in parallel without
need for a complex control unit.

361

Table 1. Performance Results with others Sorting Architectures.
FPGA Speed Latency Gate Flip LUTs Data Word Size

Sorter Used (MHz) Clock Cycles Count Flops Count Sorted (Bits)
Bitonic Virtex 2 127 14 153k - - 32 16

Odd-Even Virtex 2 147 14 137k - - 32 16
Column Virtex 2 66 32 23k - - 32 16
Shifter Virtex 2 216 32 12k - - 32 16

SFS VirtexE 115 32 18k 700 1,875 5x5 8
PRC VirtexE 159 2 32k 440 3,270 5x5 8
SRC VirtexE 96 32 13k 408 1,302 5x5 8

FIFO Scheme Virtex 2 126 32 25k 672 2,726 32 16

Table 2. Comparison with others Sorting Architectures.
Sorter

Number of Bitonic Odd-Even Column Linear Shifter FIFO Scheme

Multiplexers n (log2 n + log n)/2 n (log2 n - log n + 4)/2 -2 2n n 4n
Comparators n (log2 n + log n)/4 n (log2 n - log n + 4)/4 -1 n n n

Register n (log2 n + log n)/2 n (log2 n - log n + 4)/2 -2 2n n 2n
Counters 0 0 0 0 n

Clock Cycles (log2 n + log n)/2 (log2 n + log n)/2 4n n n

7. Acknowlegments

First author thanks the National Council for Science and
Technology from Mexico (CONACyT) for financial support
through the scholarship number 204500.

References

[1] Donald E. Knuth: Art of Computer Programming, Vol-
ume 3: Sorting and Searching, Addison Wesley Profes-
sional, Second Edition, 1998.

[2] Colavita, A.A.; Cicuttin, A.; Fratnik, F.; Capello, G.:
SORTCHIP: A VLSI Implementation of a Hardware Al-
gorithm for Continuous Data Sorting, IEEE Journal of
Solid-State Circuits, 2003, Vol 38 No. 6, pp. 1076-
1079.

[3] Batcher, K. E.: Sorting Networks and their Applica-
tions,Proceedings of the AFIPS Spring Joint Computer
Conference, 1968, Vol 32, pp. 307-314.

[4] Chung J. Kou; Zhi W. Huang: Modified Odd-Even
Merge-Sort Network for Arbitrary Number of In-
puts,IEEE International Conference on Multimedia and
Expo, 2001. ICME 2001, pp. 929-932.

[5] Tabrizi, N. Bagherzadeh, N.: An ASIC Design of a
Novel Pipelined and Parallel Sorting Accelerator for a

Multiprocessor-on-a-Chip, ASICON 2005. 6th Interna-
tional Conference On ASIC, 2005. Vol 1, pp. 46-49.

[6] Hirschil B., Yaroslavsky L.P.: FPGA Implementations
of Sorters for Non-Linear Filters, Eusipco 2004 : Pro-
ceedings of the XII European Signal Processing Con-
ference Vol 1. pp 541-544. Vienna, Austria.

[7] Chi-Sheng Lin; Bin-Da Liu;: Design of a Pipelined
and Expnadable Sorting Architecture with Simple Con-
trol Scheme, IEEE International Symposium on Cir-
cuits and Systems. ISCAS 2002, Vol 4, pp. 26-29.

[8] L. Ribas, D.Castells, J. Carrabina: A Linear Sorter Core
Based on a Programmable Register File, XIX Con-
ference on Design of Circuits and Integrated Systems,
DCIS 2004. pp. 635-640. Bordeaux, France.

[9] Chen-Yi Lee; Jer-Min Tsai: A Shift Register Architec-
ture for High-Speed Data Sorting, The Journal of VLSI
Signal Processing, 1995, Vol 11 No. 3 pp. 273-280.

362

