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a b s t r a c t

Graph based methods are among the most active and applicable approaches studied in semi-supervised

learning. The problem of neighborhood graph construction for these methods is addressed in this paper.

Neighborhood graph construction plays a key role in the quality of the classification in graph based

methods. Several unsupervised graph construction methods have been proposed that have addressed

issues such as data noise, geometrical properties of the underlying manifold and graph hyper-

parameters selection. In contrast, in order to adapt the graph construction to the given classification

task, many of the recent graph construction methods take advantage of the data labels. However, these

methods are not efficient since the hypothesis space of their possible neighborhood graphs is limited. In

this paper, we first prove that the optimal neighborhood graph is a subgraph of a k0-NN graph for a large

enough k0, which is much smaller than the total number of data points. Therefore, we propose to use all

the subgraphs of k0-NNs graph as the hypothesis space. In addition, we show that most of the previous

supervised graph construction methods are implicitly optimizing the smoothness functional with

respect to the neighborhood graph parameters. Finally, we provide an algorithm to optimize the

smoothness functional with respect to the neighborhood graph in the proposed hypothesis space.

Experimental results on various data sets show that the proposed graph construction algorithm mostly

outperforms the popular k-NN based construction and other state-of-the-art methods.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Different semi-supervised methods use different prior knowl-
edge to take advantage of unlabeled data in the learning process.
Two known such assumptions are the cluster and manifold
assumptions. In the latter assumption, the label function will
change smoothly on the data manifold. In order to model the
manifold smoothness functional, neighborhood graphs are con-
structed from the unlabeled data [1]. Necessary operators for
expression of the smoothness functional, such as the Laplace–
Beltrami operator, can be estimated using the adjacency matrix of
the neighborhood graphs. As a result, the neighborhood graph
construction plays an important role in the methods that employ
the manifold assumption.

Several neighborhood graph construction schemes have been
proposed in recent years [2–4]. In these schemes, each node of the
graph corresponds to a labeled or unlabeled data point. Each
scheme should guarantee sparse graph construction to ensure that
the semi-supervised learner runs efficiently. Graph construction
ll rights reserved.
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ban),
methods can be divided into two groups of supervised and unsu-
pervised schemes. Unsupervised methods do not use the labels of
the labeled data in the construction scheme. In contrast with these
methods, supervised schemes use data labels to optimize the graph
structure to better fit the classification task.

Among the most simple unsupervised construction schemes
are the e thresholding and k-NN methods. In e thresholding each
node is connected to the nodes that are within its e Euclidean
distance. This thresholding is prone to generating disconnected or
almost-complete graphs. On the other hand, in the k-NN approach
undirected links are made between each node to its k nearest
neighbors. Therefore, the k-NN approach has the advantage of
being robust to problems occurred in the case of choosing an
inappropriate fixed threshold.

Numerous unsupervised methods are proposed to improve the
k-NN graph construction in different aspects [2,3,5,6]. Because of
making undirected links, the k-NN method may produce nodes
with unbalanced number of edges. To alleviate this problem, the
b-matching method is proposed in [2], to produce a balanced
graph, i.e. each node will have the same number of edges. The
noise in data is another issue which was addressed to improve the
k-NN method, since the pairwise Euclidean distance is highly
sensitive to noise. The method of manifold denoising uses the
diffusion process on the data points, rather than the labels, on the
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initial k-NN graph to remove the noise of the data [5]. The k-NN
graph construction and diffusion process on the data points are
performed alternatively to denoise the manifold. Although mani-
fold denoising makes the classical methods robust against the
noise, the problem of non-adaptive selection of the neighborhood
parameters remains unsolved. Motivated by the methods of sparse
coding, ‘1 norm reconstruction was used to produce an adaptive
representation of the data points that is both sparse and more
robust to noise than the e thresholding and k-NN methods [3].
In this scheme, each data point is reconstructed as a linear
combination of other data points while minimizing the ‘1 norm of
the reconstruction coefficients. Each node will be linked to the nodes
with non-zero coefficients of its reconstruction. In addition, unlike
the classical methods, this scheme has the advantage of choosing
the number of neighbors for each data, adaptively. In an alternative
adaptive scheme, estimation of the linear error of data point
reconstruction is used to identify whether a nearest neighbor of a
point resides on the manifold tangent space at that point [6]. Each
point is linked only to its nearest neighbors that reside on the
manifold tangent space at that point. Therefore, k will be large in a
point if the manifold curvature is low in that point and vice versa.

Since the mentioned unsupervised methods do not take advan-
tage of the data labels for graph construction, the noise removal and
parameter selection quality is quite problem-dependent. For example
although the b-matching method provides considerable improve-
ment on the TEXT data set, it will make little improvement on a
digit recognition data set (USPS). A number of graph improvement
schemes addressed this problem [4,7–9]. In [9], leave-one-out (LOO)
error of the classifier is used as the objective function to tune the
bandwidths of the Gaussian edge weighting function. The optimiza-
tion of the LOO objective function may lead to ill-conditioned
solutions such as disconnected neighborhood graphs. Therefore, the
authors proposed to add a regularization term to the LOO error to
exclude degenerate graphs from the possible solutions. This regular-
ization term is the variance of the inverse bandwidths. The mini-
mization of this term will avoid abnormal bandwidths, and hence
degenerate solutions are excluded. In fact the regularization term
restricts the hypothesis space of the possible neighborhood graphs to
make the graph construction well-posed. Although this scheme
results in improvement of the accuracy of classification on many
data sets, the bandwidth parameter selection is global and hence the
optimal neighborhood graph may not be included in the possible set
of solutions. That is, the graph hypothesis space is too limited. Similar
method is proposed by [10] for supervised graph construction. The
Mahalanobis based distance learning is also applied in the Gaussian
edge weighting. This method uses a self-training approach in a graph
based classification method. The labels of the unlabeled data are
estimated using the classification method and then used for distance
learning. The graph construction using the learned metric and label
estimation are performed alternatively, until the method converges.
Since the learned metric is global in the feature space, it has the
similar limitations of the LOO minimization method. In addition, the
Mahalanobis metric learning algorithms, use the computationally
demanding semi-definite programming (SDP) methods to learn the
parameters of the metric. This will cause the metric learning methods
to be impractical for large data sets.

Sharpening of the graph edges is proposed to maximize
the smoothness of the optimal label function with respect to
the weights of the graph [4]. It has been shown that similar to the
LOO method, the optimization of the weights without restricting
the graph hypothesis space may lead to the degenerate solutions.
The authors proposed an ad hoc solution by disconnecting the
edges connecting any two labeled points and the edges that are
from an unlabeled data to a labeled data. Since the authors forced the
optimal graph to be very similar to the initial graph, the hypothesis
space will be too limited.
Methods of spectral kernel learning are proposed to build a
task specific kernel from the Laplacian matrix [8]. A classical
construction method may be used to produce an initial graph.
The Laplacian operator on the graph is then decomposed into its
eigenvectors. The method then takes advantage of the labeled
data to change the kernel eigenvalues in order to minimize the
Frobenius distance of the kernel induced by the Laplacian matrix
with the optimal kernel obtained by the labeled data [8]. It is
important to note that the eigenvalue transformation is mono-
tonic in order to make the kernel consistent with the smoothness
assumption. Since the eigenvectors of the graph Laplacian matrix
will not change, the structure of the graph may not be subject to
the necessary change in the initial graph. Therefore, like the
previous supervised methods, the hypothesis space is limited in
this method too.

Using Gaussian Process (GP) to model the label function, the
parameters of the neighborhood graph can be learned using the
maximization of the expectation of the marginal likelihood through
the EM algorithm [7]. Since the objective function is not concave the
EM may lead to suboptimal solutions. This problem will get worse
and the solution will be sensitive to the initial solution if the number
of optimization variables is increased in the case of edge weights
learning.

In most of the mentioned supervised methods, in order to
make the problem well-posed, the neighborhood graph hypoth-
esis space is too restricted. This restriction may cause the optimal
graph to be excluded from the hypothesis space. The paper is
aimed to show that the optimal graph is a subgraph of a k0-NN
graph, for a large enough k0, and then perform the optimization on
this set. Therefore, the hypothesis space will be the subgraphs of
the k0-NN graphs.

We will first show that the objective functions of three supervised
methods consisting of the graph edge sharpening (GES) [4], spectral
kernel learning (SKL) [8] and marginal likelihood (ML) [7] are almost
the same. Then we propose to use the expected marginal likelihood
as an objective function. The advantage of this objective function is
that it can be expressed as a linear form consisting of all related edge
weights. This objective function is then optimized with respect to the
edge weights. Since the number of edge weights is high, instead of
using EM, we propose a method to estimate the expectation of the
marginal likelihood. The estimated objective is then optimized using
an optimal greedy method. The proposed method is then compared
with the popular k-NN, ML and SKL methods of graph construction.
To investigate whether the graph improvement methods may further
reduce the error rate, the SKL and ML methods are applied on both
the k-NN and the proposed method graphs.

The rest of the paper is organized as follows. In Section 2, the
basics and notations of the graph based semi-supervised learning
is described. In Section 3, the three prominent supervised graph
improvement methods, namely GES, SKL and ML are analyzed.
In Section 4, the proposed method is described. In Section 5, the
proposed method is compared with other methods. Finally, the
paper is concluded in Section 6.
2. Basics and notations

Consider y¼ fy1, . . . ,ylg as the data labels, and Xl ¼ fx1, . . . ,xlg

and Xu ¼ fxlþ1, . . . ,xlþug as the labeled and unlabeled data sets,
respectively. We assume that X ¼ Xl [ Xu and y are given. The
problem is to find an estimate f ¼ ff 1, . . . ,f lþug for y¼ fy1, . . . ,
ylþug, known as the label function. It is shown that without any
prior knowledge on the label function, this estimation problem is
ill-posed [11,12].

The manifold assumption is a known prior knowledge on the
label function in the field of the semi-supervised learning [13].
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It states that the desired label function should be smooth over the
manifold of the data. In other words, two nearby points should
have similar labels. Smoothness of a label function f will be high if
S(f) with the following definition is low:

SðfÞ ¼
Xlþu

i,j ¼ 1

Wijðf i�f jÞ
2

ð1Þ

where Wij ¼ expf�Jxi�xjJ
2=2s2g for all i and j for which either xi

is among the k-NN of xj or vice versa, otherwise Wij is zero.
W represents the adjacency matrix of the neighborhood graph.

Given the neighborhood graph Laplacian L¼D�W, where D is the
diagonal matrix of degree of each node with Dii ¼

P
jWij, it is easy

to show that Eq. (1) can be rewritten as [1]

SðfÞ ¼
Xlþu

i,j ¼ 1

Lijf if j ¼ f>Lf ð2Þ

Let l1rl2r � � �rllþu and fv1, . . . ,vlþug be the spectral

decomposition of the Laplacian matrix. Then using L¼
Plþu

i ¼ 1

liviv
>
i , Eq. (2) can be stated as

SðfÞ ¼
Xlþu

i ¼ 1

liðv
>
i fÞ2 ð3Þ

It is easy to show that the value of li is corresponding to the
smoothness of the eigenvector vi [1]. Therefore, the last equation
shows that S(f) will increase if f is similar to the non-smooth
eigenvectors, i.e. the eigenvectors with high value of the eigenvalue.

The manifold assumption then can be employed in the Tikhonov
regularization method to find an estimate of the label function:

min
f

JCf�yJ2
þgf>Lf ð4Þ

where C is a selection matrix with C¼ ðIl�l 0l�uÞ. Equating the
derivative of the objective function to zero, we may obtain the
optimal label function as

f ¼ ðC>CþgLÞ�1C>y ð5Þ

3. Supervised graph improvement methods

In the GES method [4], it is shown that the smoothness
functional S(f) for the optimal label function can be stated as

SðfÞ ¼ y>y�y>e ðIþgLÞ�1ye ð6Þ

in the case that the Tikhonov regularization is done in the
following way:

min
f

Jf�yeJ
2
þgf>Lf ð7Þ

where ye ¼ ðy
> 01�uÞ

>. The optimal graph should minimize this
functional. That is, according to the manifold assumption it is
expected that the neighborhood graph will be a graph over which
the label function is smooth. Hence the problem can be stated as

max
G

y>e ðIþgLÞ�1ye s:t: WijZ0 ð8Þ

where G is the set of neighborhood graph parameters. Clearly, the
eigenvectors of ðIþgLÞ�1 will be the same as the eigenvectors of L.
However, the eigenvalues li will be changed to 1=ð1þgliÞ. There-
fore, the objective function of Eq. (8) can be rewritten in terms of the
eigenvalues and eigenvectors of the Laplacian matrix as follows:

max
G

Xlþu

i ¼ 1

1

1þgli
ðv>i yeÞ

2
ð9Þ

Maximizing the objective function will maximize the smoothness of
the label function ye, because the objective will increase if ye is
similar to the smooth eigenvectors.
It is easy to show that one of the optimal solutions of (8) is a
graph with a diagonal adjacency matrix, which is a degenerate
solution. The authors in [4] proposed an ad hoc solution for (8)
which is a valid graph:

Wopt ¼
diagonal matrix 0

Wul Wuu

 !
ð10Þ

where u and l subscripts are corresponded to the labeled and
unlabeled indexes. It is noticeable that the proposed optimal
solution does not depend on the labeled data. This means that
GES is not really a task specific graph construction.

In the ML method [7], it is assumed that the label function f is
a Gaussian stochastic process with f �Nð0,Lþ Þwith yi ¼ f iþei and
e�Nð0,s2IÞ, where Lþ is the pseudo-inverse of the Laplacian
matrix. It is easy to show that y will be a Gaussian stochastic
process with my ¼ 0 and Sy ¼ Lþl þs2I [14]. The maximization of
the marginal likelihood pðy9X,YÞ with respect to Y will yield a
maximum likelihood estimation of the parameter Y. In the graph
improvement problem, Y may be the parameters of the weight
function of the edges (for example the bandwidth of the Gaussian
weighting) and the parameter of the Laplacian eigenvalues
transformation. The marginal likelihood will be [7]

log pðy9X,YÞ ¼�
1

2
y>ðLþl þs

2IÞ�1y�
1

2
log detðLþl þs

2IÞ�
l

2
log 2p

ð11Þ

Let yt ¼ ðy1, . . . ,yl,ylþ1, . . . ,ylþuÞ be the ground truth value of the
label function. Then the marginal likelihood of yt will be a random
variable. As an alternative approach, the expected value of this
random variable may be maximized with respect to the unknown
parameters:

E½log pðyt9X,YÞ� ¼ �
1

2
E½yt�

>ðLþ þs2IÞ�1E½yt�

�
1

2
log detðLþ þs2IÞ�

lþu

2
log 2p ð12Þ

where all the expectations are given with respect to pðyt9X,y,YÞ.
The latter optimization problem has the advantage that rather
than Lþl , which is the labeled part of the kernel matrix, Lþ will
appear in the objective function. This makes it possible to
optimize all the entries of the kernel matrix Lþ . The first term in
Eq. (11) can be considered as the smoothness of the label function y:

y>ðLþl þs
2IÞ�1y¼

Xl

i ¼ 1

1

mðlÞi þs2
ðvl>

i yÞ2 ð13Þ

where fmðlÞi ,vl
i91r ir lg is the spectral decomposition of Lþl . We may

note that Lþ is a kernel matrix consistent with the manifold
assumption. Therefore, Lþl is the induced kernel of Lþ on the
labeled points. As a result, greater mðlÞi corresponds to smoother vl

i.
Since 1=ðmðlÞi þs

2Þ is a decreasing function of smoothness, compar-
ing this equation and Eq. (3) shows that the objective function
will penalize more if the label function y is similar to the non-
smooth eigenvectors of Lþl .

In SKL method [8], the spectral decomposition of the kernel
matrix Lþ is obtained as fm1, . . . ,mlþug and fv1, . . . ,vlþug [8].
Therefore, we have K¼

Plþu
i ¼ 1 miviv

>
i . The values of mi are then

optimized such that the Frobenius angle of the kernel matrix for
the labeled data and the optimal kernel T¼ yy> is minimized. The
value of mi is inverse proportional to the smoothness of the basis
function vi. The optimization is constrained to conserve the order
of smoothness of the eigenvectors. To avoid over-fitting, the trace
of the kernel matrix will be constrained to be one:

max
mi

/Kl,TS
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s:t: K¼
Xlþu

i ¼ 1

miv
l
iv

l>
i , miZ0

trðKÞ ¼ 1, miZmiþ1, 8iAf1, . . . ,lþu�1g ð14Þ

Rewriting of Eq. (14) will yield

/Kl,yy>SF ¼ tr
Xlþu

i ¼ 1

miv
l
iv

l>
i yey>e

 !

¼
Xlþu

i ¼ 1

mi tr½ðvl>
i yeÞðy

>
e vl

iÞ�

¼
Xlþu

i ¼ 1

miðv
l>
i yeÞ

2
ð15Þ

where we have considered the fact that trðABCDÞ ¼ trðBCDAÞ and
vl

i is the labeled part of the ith eigenvector. It is interesting to
observe that similar to the GES and ML methods, SKL also
optimizes the smoothness functional for graph construction,
implicitly. The main difference between the previous supervised
methods is that they use different optimization variables. In GES
and ML, parameters of the weight function of the graph edges are
subject to the optimization, whereas in SKL the eigenvalues of the
kernel matrix are the optimization variables. In addition, the
argument to the smoothness function may be changed in various
methods. In SKL and GES methods, the smoothness of the label
function y is the objective function. However, in ML method the
objective function can be the expected value of the smoothness of
yt , which is the ground truth labels of all the points. Furthermore,
to avoid degenerate solutions all these methods restrict the graph
hypothesis space. In GES, the desired graph is forced to be the
same as the k-NN graph with some edges changed to be uni-
directed and the edges between the labeled points be removed.
In SKL, the structure of the graph remains almost the same as the
k-NN graph, since the eigenvectors of the graph Laplacian remain
unchanged. In ML, the possible set of graphs is the subgraphs of
k-NN graphs where the edges with the end point distance greater
than a threshold are weakened due to the exponential edge
weighting.
4. The proposed method

In this section, we first propose an appropriate linear objective
function for graph construction. To make the optimization problem
well-posed, a prior knowledge for the structure of the neighborhood
graph is proposed and justified. Finally, the algorithm to solve the
proposed optimization problem is provided.

4.1. The proposed objective function

We propose to maximize expectation of the smoothness of the
ground truth labels with respect to the graph edge weights:

min
W

Eyt9X,y

X
i,j

Wijðyt,i�yt,jÞ
2

2
4

3
5

s:t: WijZ0 ð16Þ

This formulation has the advantage that in contrast to the SKL and
GES methods, the objective function can be posed as a linear
function of all the edge weights, and hence the solution to the
optimization of this problem can be easily obtained through
closed form solutions. The objective function of the SKL method
(Eq. (15)) is inversely proportional to the smoothness of the ye,
which contains only the labels of the labeled data points. There-
fore, since the labels of the unlabeled points are considered to be
zero in ye, to state the objective function of SKL in a linear form
similar to (16), only the weights of the edges from labeled points
to themselves and the edges from labeled points to the unlabeled
points will appear in the objective function. The same problem
will happen to the GES objective function, which is also inversely
proportional to the smoothness of ye.

If we consider a 2 class problem, where yiAf�1;1g, Eq. (16)
can be stated as

min
W

X
i,j

WijEyt9X,y½ðyt,i�yt,jÞ
2
� ¼
X

i,j

4Wij Prðyt,iayt,j9xi,xj,yÞ

s:t: WijAf0,1g ð17Þ

The solution to this problem may not be a symmetric matrix. We
use the new matrix Wn

¼maxðW,W>
Þ to remedy this problem.

To solve the proposed optimization problem we need to
estimate pi,j ¼ Prðyt,iayt,j9xi,xj,yÞ. As we will show the estimation
of pi,j may be harder or as hard as the estimation of the optimal
Bayes labels of the unlabeled points.

Lemma 1. Using the maximum likelihood estimation (MLE) of

P ¼ fpi,j91r i,jr lþug, it is possible to find the MLE of the optimal

(Bayes) labels of the unlabeled data Xu.

Proof. Consider an arbitrary unlabeled point xk, lþ1rkr lþu,
with its label random variable Yk. Then we have

pk,1 ¼ PrðYkaY19x1,xk,Y1 ¼ y1, . . . ,Yl ¼ ylÞ

¼ PrðYkay1,Y1 ¼ y19x1,xk,Y1 ¼ y1, . . . ,Yl ¼ ylÞ

þPrðYka�y1,Y1 ¼�y19x1,xk,Y1 ¼ y1, . . . ,Yl ¼ ylÞ

¼ PrðYkay19x1,xk,Y1 ¼ y1, . . . ,Yl ¼ ylÞ ð18Þ

The optimal Bayes label of xk can be stated as below:

yn

k ¼
�y1, PrðYkay19x1,xk,Y1 ¼ y1, . . . ,Yl ¼ ylÞZ0:5

y1 otherwise

(
ð19Þ

Using (18), Eq. (19) can be stated as

yn

k ¼�y1ð2Iðpk,1�0:5Z0Þ�1Þ ¼ gðpk,1Þ ð20Þ

where Ið�Þ is the indicator function. Since yn

k is a function of pk,1,

we may use the invariance property of MLE [15] to find the MLE

of yn

k:

ymle
k ¼ gðpmle

k,1 Þ ð21Þ

Therefore, if we have the MLE of pk,1 we can find the MLE of yn

k .

However, since g is not a one-to-one function, the converse is not

true. &

Maximum likelihood estimation generally shows nice properties
only when the number of labeled samples is high. For example
under certain regularity conditions on the probability density
function, it may be shown that MLE is an efficient estimator [15].
Lemma 1 may be useful in the case that a large number of labeled
data is available. However, in real world problems this is not the
case. To consider these cases, asymptotic convergence rate of the
consistent estimators of pk,1 and yn

k are compared in Lemma 2.

Lemma 2. If ŷ is a consistent estimator of p1,k with the convergence

rate of aðl,eÞ, with l being the number of labeled samples, then there

exists a consistent estimator of the optimal Bayes label of xk with the

convergence rate of Oðaðl,eÞÞ.

Proof. Since ŷ is a consistent estimator of p1,k we have

8e40 : Prð9ŷ�p1,k9reÞZ1�aðl,eÞ,

lim
l-1

aðl,eÞ ¼ 0 ð22Þ
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for a function að�,�Þ, and l is the number of labeled data. Now
consider the estimator â ¼�y1ð2IðŷZ0:5Þ�1Þ. We have

80oeo9p1,k�0:59

Prð9â�yn

k9reÞ ¼
PrðŷAð0:5,þ1ÞÞ, p1,kZ0:5

PrðŷAð�1,0:5ÞÞ, p1,ko0:5

8<
:

ZPrð9ŷ�p1,k9reÞZ1�aðl,eÞ ð23Þ

Therefore, â will be a consistent estimator for yn

k with the
convergence rate of Oðaðl,eÞÞ. &

According to Lemma 2, using an estimation of pk,1 for graph
construction fails. That is, to solve the graph construction pro-
blem for label estimation, we have to solve a problem as hard as
(or even harder than) the main problem. In a similar manner, the
authors in [16] have used SVM to estimate pi,j, implicitly. This
method clearly fails when the original problem may not be solved
efficiently by SVM. For example, when the number of training
samples are low, SVM with linear or RBF kernels fails. However,
the main problem may be solved efficiently using a stronger
regularization such as manifold based methods.

To remedy this problem, we use a prior knowledge on the graph
structure. In this case, estimation of pi,j may be a more specific
problem than its estimation in the unconstrained neighborhood
graph, since we have pi,j ¼ Prðyt,iayt,j9xi,xj,y,Rðxi,xjÞÞ, where R is
the prior knowledge on the neighborhood graph.

We will show in the next subsection that the optimal neigh-
borhood graph will be a subgraph of the k0-NN graph, for a large
enough k05 lþu. Using this prior knowledge, the optimization
problem (17) can be stated as follows:

min
Wij A f0;1g

X
i,j

4Wij Prðyt,iayt,j9xi,xj,y,fxiANk0 ðxjÞ3xjANk0 ðxiÞgÞ

s:t: 8i, j : xj =2 Nk0 ðxiÞ ^ xi =2 Nk0 ðxjÞ : Wij ¼ 0,

8i
X

xj ANk0 ðxiÞ3xi ANk0 ðxjÞ

Wij ¼ k ð24Þ

where NkðxiÞ is the set of k-NNs of xi. It is noticeable that Eq. (18)
does not hold in this case. Since there may be no labeled point in
the nearest neighbors of an arbitrary unlabeled point xk, and xk

may not be included in the nearest neighbors of any labeled point.
The optimization problem in (24) can be solved using a greedy
method, by connecting the ith node to the nodes j, where pi,j is
among the k smallest values of fpi,m9xmANk0 ðxiÞ3xiANk0 ðxmÞg.
Since the proposed objective function can be solved using a
greedy method, we can show that if we set pi,jpJxi�xjJ

2, the
k-NN graph will be the optimal graph. In this case, for each node i,
Wij will be set to one for nodes j that the value of Jxi�xjJ

2 is
among the k minimum values of fJxi�xjJ

2;1r jr lþug. Actually
we may better estimate pi,j by considering the data labels. We
propose to estimate the values of pi,j using a discriminative
classification approach such as SVM [17]. This estimation process
can be seen as a link classification. It classifies the links ðxi,xjÞ

between nearest neighbor points into two classes of inter- and intra-
class links. For the inter-class links we have pi,j ¼ Prðyt,iayt,j9xi

and xj are among the k02 NNs of each otherÞZ0:5. Similarly we
have pi,jo0:5 for intra-class links.

4.2. The prior knowledge on the neighborhood graph

To find an appropriate prior knowledge on the graph, we need
to define the optimal neighborhood graph.

Definition 1. Let NMe ðxiÞ ¼ fxj : dMðxi,xjÞreg be the e neighbor-
hood of xi on the manifoldM, where dM is the geodesic distance
on M. In addition, let NRm

e ðxiÞ ¼ fxj : Jxi�xjJ2reg be the e neigh-
borhood of xi in the ambient space Rm.

Optimal neighborhood graph may be defined based on NMe ðxiÞ,

rather than NRm

e ðxiÞ. That is in the optimal graph, each node xi will

be connected to nodes in NMe ðxiÞ. We are going to recover the
neighborhood graph of the data manifold in this paper. It should
be mentioned that the notation of the neighborhood refers to the
distances of the points on the manifold rather than the ambient
space. Moreover, it is noticeable that the neighborhood graph is
used to approximate the smoothness integral on the manifold [1].
As a result, edges of this graph should be connected based on the
neighborhood on the manifold. Therefore, we should use NMe ðxiÞ,
rather than NRm

e ðxiÞ.
We will show that under the high sampling rate of the manifold,

with high probability, the optimal neighborhood graph is a subgraph
of an eþe0-ball graph, based on the Euclidean distances in the
ambient space Rm.

Theorem 1. Given e,e0,m40, there exists a large enough sampling

rate of the manifoldM such that Prð8xi : NMe ðxiÞDNRm

eþ e0 ðxiÞÞZ1�m.

Proof. Authors in [18] have shown that for given l,m40 there
exists a sampling of M with rate aðl,mÞ such that

Pr 8xi,xj : 1�
dGðxi,xjÞ

dMðxi,xjÞ

����
����rl

� �
Z1�m ð25Þ

where dGðxi,xjÞ is the length of the shortest path between xi and xj

in the neighborhood graph G, with the edges labeled by the
Euclidean distance of the edges end points. We have

1�mrPrð8xi,xj : 9dGðxi,xjÞ�dMðxi,xjÞ9rldMðxi,xjÞÞ

rPrð8xi,xj : 9dGðxi,xjÞ�dMðxi,xjÞ9rMlÞ ð26Þ

where M¼ supxi ,xj AM dMðxi,xjÞ and assuming the manifold is
bounded. Let l0 ¼Ml.

Now consider the related sampling rate aðe0,mÞ for which

Eq. (26) holds for l0 ¼ e0. Let Ni ¼ fxj : xjANMe ðxiÞg be the set of e
neighborhood of xi on M. Then, with probability of at least 1�m,

for all xi and xjANi, we have 9dMðxi,xjÞ�dGðxi,xjÞ9re0. Therefore,

dGðxi,xjÞrdMðxi,xjÞþe0reþe0. Furthermore, Jxi�xjJ2rdGðxi,xjÞ.

Hence, Jxi�xjJ2re0 þe. That is there exists a sampling ofM with

rate aðe0,mÞ for which with probability of at least 1�m, the e
neighborhood of each point xi onM lie in the e0 þe neighborhood

of that point in Rm. &

One of the main consequences of Theorem 1 is that for a
densely sampled manifold, in order to find the e neighbors on the
manifold (optimal neighborhood), we may search in a larger (but
comparable to e) neighborhood of the ambient space. This fact
helps to bound the space of possible neighborhood graph struc-
tures. Therefore, it may be employed in an optimization scheme
to make the graph construction problem well-posed.

Since e neighborhood graphs are not suitable for the classifica-
tion problem, we may generalize this theorem to consider the
k-NN graphs. To do this, note that for an e neighborhood graph
Ge ¼ ðVe,EeÞ, there exist k and k0 such that Ge is a super-graph and
subgraph of k-NN and k0-NN graphs, respectively. To do this we
may take k¼minvi AVe degðviÞ and k0 ¼maxvi AV e degðviÞ.

We find such a k for the e neighborhood (on M) graph and
k0 for the eþe0 neighborhood (on ambient space) graph. With
probability of at least 1�m, we have

EMk DEMe DER
m

eþ e0DER
m

k0 ð27Þ

where ðV ,EMk Þ and ðV ,ER
m

k Þ denotes the k-NN graphs onM and Rm,
respectively, and ðV ,EMe Þ and ðV ,ERm

eþ e0 Þ are the e and eþe0 neigh-
borhood graphs on M and Rm, respectively. Since, we may take
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Fig. 1. The optimal graph is a subgraph of the 3-NN graph. Dark points are the

sample points of the manifold. The three nearest neighbor points of x1 and x5 are

indicated with arrows.

Fig. 2. xj�xi lies on two complement subspaces for inter- and intra-class links.

Squares and diamonds are the labeled data. Circles are the unlabeled data that are

sampled from the manifold.

Fig. 3. Nearby inter- and intra-class links are locally separable on the manifold,

since they lie approximately on two complement subspaces.
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eþe0 small enough (by increasing the sampling rate), k0 will be a
small fraction of all the data point number lþu.

As an example, consider the manifold shown in 2D in Fig. 1. It
can be easily seen that the optimal 2-NN graph is the subgraph of
the 3-NN graph in the ambient space. It is obvious that the edges
from x1 to x4 and x5 to x8 should be removed in the optimal
neighborhood graph.

4.3. Link classification

Link classification is aimed to estimate the values of pi,j. The
input to the classifier is a nearest neighbor link ðxi,xjÞ and the
output is 0 or 1 if the probability that yt,iayt,j is less or greater
than 0.5, respectively. That is the classification is aimed to dis-
criminate the intra- and inter-class nearest neighbor links. Train-
ing data generation and the appropriate classifier selection are the
main issues that will be described next.

Consider the labeled data Xl ¼ fx1, . . . ,xlg with the correspond-
ing labels y¼ fy1, . . . ,ylg, and the labeled sets Dj

l ¼ fxiAXl; yi ¼ jg

for 1r jrnC , where nC is the number of classes. Then define
intra- and inter-class nearest neighbors of xi as NW

k0
ðxiÞ ¼ fxjADyi

l ;

xj is within the k0-NNs of xi in Dyi

l g and NB
k0
ðxiÞ ¼ fxjAXl\D

yi

l ;xj is
within the k0-NNs of xi in Xl\D

yi

l g. It is clear that 8i : 9NB
k0
ðxiÞ9¼

9NW
k0
ðxiÞ9¼ k0. Then the positive and negative training data sets

will be DP
link ¼ fðxi,xjÞ;xiAXl,xjANB

k0
ðxiÞg and DN

link ¼ fðxi,xjÞ;xiAXl,
xjANW

k0
ðxiÞg, respectively.

Let TMðxiÞ be the tangent space ofM at point xi. It is clear that
because of the manifold assumption, the nearest neighbors of xi in
Rm that lie on TMðxiÞwill have almost the same label yi. That is for
a large number of negative links ðxi,xjÞ, xj�xi resides on a local
neighborhood of xi on TMðxiÞ. In addition, for any member of DP

link,
ðxi,xjÞ, although xi and xj are nearest neighbors in the ambient
space, they will not be neighbors on the manifold. This comes
from the facts that yiayj for these links and according to the
manifold assumption two neighbor points on the manifold may
have the same label with high probability. Therefore, xj�xi lies
outside a local neighborhood of xi on TMðxiÞ. We may conclude
that for each xi, ðxj�xiÞ’s lie almost in two different parts of the
ambient space for the positive and negative links. This fact is
illustrated for a simple example in Fig. 2.

Hence if we consider the link data points of the form ðxi,xj�xiÞ,
the link data points can be classified locally on the manifold using
an SVM classifier with a Gaussian kernel. Since the tangent space
of a regular manifold changes smoothly on the manifold, for nearby
xi’s on the manifold, the tangent space and its complement remain
almost the same. Therefore, the positive and negative links for
nearby xi’s are almost separable by an SVM classifier with radial
basis kernel. This fact is shown for a simple example in Fig. 3.
Therefore, we split the links data of two classes into several local
sets on the manifold. One simple way to do this is to split the links
according to the estimated label of one of its end points using
Tikhonov regularization. It is noticeable that the data points classi-
fication based on the Tikhonov regularization over the k-NN graph
almost implies the notation of the locality on the manifold, because
according to the manifold assumption, data points on the manifold
with the same labels occur almost close to each other on the
manifold. Consider the link data be split as DlinkðmÞ ¼ fðxi,xj�xiÞ :

ðxi,xjÞADN
link [ DP

link; f i ¼mg for 1rmrnC . We train a new SVM
classifier for each Dlink(m).

4.4. Graph construction

Prior to use of the link classifier in the graph construction phase,
the labels of the data in the transduction set Xu should be estimated.
Simple k-NN graph and Tikhonov Regularization using the Laplacian
matrix in a one-against-all classification scheme is used to obtain an
estimation ŷi ¼ f ðxiÞ of the data point labels. For each point xi, let
NRm

d ðxiÞ ¼ fz
ðiÞ
1 , . . . zðiÞd g. Pairs of ðxi,z

ðiÞ
j Þ are classified using the SVM
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related to ŷi (in the ascending order of j), where f is the estimation of
labels using a graph based method. Using the greedy solution to the
optimization of Eq. (24), the k first pairs that are classified as
negative are established. If there are less than k negative pairs in
Nk0 ðxiÞ, pairs of xi with its ðk0 þuÞ-NNs are established without any
classification, where uZ1, until k established links for xi is achieved.
This step is necessary, since we require each node to have at least k

neighbors on the graph. Otherwise, the graph may be disconnected,
which leads to poor generalization performance [4]. Algorithm 1
describes the proposed graph construction method.

Algorithm 1. The proposed supervised graph construction
algorithm.

L’ Laplacian matrix of the k-NN graph of the whole data set
g’ one-against-all classification of all data using Tikhonov
Regularization
for all data point xi do
fz1, . . . ,zlþu�1g’Nlþu�1ðxiÞ

selected’0

j’0

while selectedok and jrk0 do
j’jþ1

class’class of ðzi,zjÞ classified by the gith SVM

if class¼0 then
connect xi to zj

selected’selectedþ1
end if

end while
if selectedok then

repeat
j’jþ1
connect xi to zj

selected’selectedþ1
until selected¼k

end if
end for

5. Experimental results

A number of popular data sets, namely MNIST [19] and USPS
[20] (digit recognition), ISOLET from the UCI repository (spoken
letter recognition), ForestCover from the UCI repository (Forest-
Cover type classification), Corel1 (an image categorization data
set from Corel data set) [21] and HyperSpectral (a 220 band
remote sensing data set downloaded from Purdue University remote
sensing project page (June 12, 1992 AVIRIS image North-South
flightline)) are selected. The characteristics of the data sets are
summarized in Table 1. 1000 data points of each data set were
chosen as the training and test sets. Selection is done in a way that
almost the same number of data points corresponding to each label
is chosen. To speed up the process of graph construction and to
Table 1
Data sets characteristics.

Data set Number of data

points

Number of

features

Type of features

MNIST 60,000 784 Integer in [0, 255]

USPS 11,000 256 Integer in [0, 255]

ISOLET 7797 617 Real in [�1, 1]

ForestCover 119,104 54 Integer in [�146,

7173]

COREL1 1000 144 Integer in [0, 7]

HyperSpectral 21,025 220 Integer in [955,

9604]
remove the noise in the data, the dimensionality of the data was
reduced by applying the PCA algorithm. The regularization trade off
parameter g is set to the fixed value of 0.01, and the number of
nearest neighbors k is set to 7, which can also be tuned by the
standard cross validation method. The number of training links per
training data, k0 (2rk0r10), can be chosen by cross validation and
k0 is set to a large value (for example k0 ¼ 40). The method of one-
against-all is used to solve the multi-class problem. That is, for each
data xi and class j, f i,j will be the estimated label that xi belongs to
class j. The assigned class of xi will be argmaxj f i,j. The number of
learned eigenvalues in SKL is set to 500. All problem are multi-class,
except HyperSpectral data set which we considered the problem of
separation of the first class against the other classes.

5.1. Link classification performance

We compared the performance of the link classification algo-
rithm in three cases. These cases include:
�

Tab
Acc

D

M

C

Fo

IS

U

H

One SVM: Use a single SVM to classify all the links.

�
 Multiple SVMs: Split the link data set according to the estimated

label of one of their end points.

�
 All Links: The same as multiple SVMs, except that we used all

links instead of links with nearest neighbors end points. In fact
this method is similar to the idea of [16], which performs the
classification on all points.

Two hundred samples are selected as the labeled set. k0 and k0 are
set to 5 and 40, respectively. The dimensionality of the data is
reduced to 30 using PCA. The accuracies of the link classification
in these cases are shown in Table 2.

It is noticeable that the proposed Multiple SVMs method almost
outperforms the other methods. In addition, the higher accuracies of
the Multiple SVMs method compared with the All Links method in
most cases show that the estimation of pi,j is simpler when we use
the proposed prior knowledge on the neighborhood graph. There-
fore, we expect that the graph construction using the proposed
method outperforms the simple k-NN method.

5.2. Graph construction performance

To evaluate the proposed method quantitatively, a number of
classification experiments with different labeled sets is designed.
Each experiment is repeated 20 times to find the confidence
interval of the error. The proposed method is compared with the
SKL [8], GES [4] and ML [7] methods. In order to further investigate
the quality of our graph construction, SKL and ML are applied on top
of the graph constructed by the proposed method. In all RBF SVMs,
the data is whitened in the pre-processing step and the bandwidth
is taken proportional to squared root of the number of features. It is
noticeable that data whitening scales each feature almost in [�1,1]
along the covariance principal directions. Average classification error
rate of different methods when the number of PCA dimensions is 30
and the labeled set size is 200 are compared in Table 3.
le 2
uracies of link classification for different link classification algorithms.

ata set One SVM (%) Multiple

SVMs (%)

All links (similar

to [16]) (%)

NIST 74.270.5 79.070.5 76.070.3

OREL1 69.170.3 74.270.3 72.270.2

restCover 74.870.5 74.270.4 72.970.5

OLET 74.770.3 77.870.3 73.670.2

SPS 76.470.4 81.670.4 75.770.4

yperSpectral 56.770.5 61.770.7 66.470.4



Table 3
Classification error rate of different methods.

Method MNIST (%) COREL1 (%) ForestCover (%) ISOLET (%) USPS (%) HyperSpectral (%)

Linear SVM 24.270.4 20.070.3 22.270.4 25.370.5 21.770.4 29.170.4

RBF SVM 17.470.4 20.570.3 18.070.4 22.770.4 15.570.3 28.370.4

k-NN 14.070.3 22.070.3 16.670.4 25.970.4 13.270.3 26.770.5

GES 14.070.4 21.770.3 17.270.3 26.770.5 13.570.4 26.870.4

SKL 14.670.4 24.370.4 16.570.4 28.370.5 13.570.3 29.070.5

ML 12.870.4 21.170.3 16.570.4 25.570.5 11.870.3 26.970.6

Sk-NN 13.270.3 20.170.3 15.570.3 22.070.4 12.370.3 25.770.5
Sk-NNþML 12.170.3 20.070.3 13.970.4 23.070.5 11.270.3 26.170.5

Sk-NNþSKL 12.570.3 19.670.3 13.270.3 20.870.3 11.770.3 27.470.5

Fig. 4. Comparison of the average error rates of different methods in USPS, COREL1, ISOLET, MNIST, ForestCover and HyperSpectral data sets.
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Error rates of the k-NN, SKL, ML, GES and Sk-NN methods are
plotted against the number of PCA dimensions in Fig. 4. Sk-NN
represents the proposed supervised k-NN method.

It is noted that the proposed method performance is compe-
titive to the ML method. That is, the Sk-NN method outperforms
ML on COREL1, ISOLET, ForestCover and HyperSpectral data sets.
On the other hand, ML performs a little better on USPS and MNIST
data sets. In contrast to Sk-NN, the ML method fails to improve
the performance of classification on some data sets such as
ISOLET, ForestCover and HyperSpectral.

The combinations of Sk-NN and other methods are compared
in Fig. 5. When other methods are applied on top of Sk-NN, the
performance is improved. Although SKL has almost the highest
error rate, the Sk-NNþSKL method has the minimum error rate in
data sets such as ISOLET, MNIST and ForestCover. This means that
SKL needs a suitable neighborhood graph as a base to improve the
classification accuracy. Therefore, the proposed method may also
be used as a suitable basis for the other methods.
To evaluate robustness of the proposed method, the difference
between error rates of the Sk-NN and k-NN methods are plotted
against k0 in Fig. 6 using 200 labeled samples. As can be seen, the
differences do not exhibit large deviation from the mean values in
all data sets, which shows that the proposed method is almost
robust to this parameter.
6. Conclusion

In this paper, a novel supervised graph construction scheme is
proposed. We have shown that under the using of large enough
manifold sampling rate, the optimal neighborhood graph is
subgraph of a k0-NN graph with high probability. Therefore, we
used this assumption as the prior knowledge. In contrast with
other methods, this assumption also helps to take a suitable
hypothesis space for the neighborhood graph. In addition, the
proposed method makes it possible to learn the structure of the
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graph by maximizing the expectation of the smoothness. To avoid
the local minima problem, a method to directly calculate the
expectation is proposed. Experimental results show that the
proposed method is superior or competitive with other state-of-
the-art supervised graph construction methods.
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