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a b s t r a c t

The concept of a classifier competence is fundamental to multiple classifier systems (MCSs). In this

study, a method for calculating the classifier competence is developed using a probabilistic model. In

the method, first a randomised reference classifier (RRC) whose class supports are realisations of the

random variables with beta probability distributions is constructed. The parameters of the distributions

are chosen in such a way that, for each feature vector in a validation set, the expected values of the class

supports produced by the RRC and the class supports produced by a modelled classifier are equal. This

allows for using the probability of correct classification of the RRC as the competence of the modelled

classifier. The competences calculated for a validation set are then generalised to an entire feature

space by constructing a competence function based on a potential function model or regression. Three

systems based on a dynamic classifier selection and a dynamic ensemble selection (DES) were

constructed using the method developed. The DES based system had statistically significant higher

average rank than the ones of eight benchmark MCSs for 22 data sets and a heterogeneous ensemble.

The results obtained indicate that the full vector of class supports should be used for evaluating the

classifier competence as this potentially improves performance of MCSs.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple classifier systems (MCSs) were shown to outperform
single classifiers for a wide range of classification problems [1–4].
The reason is that a combination of classifiers reduces risks
associated with picking an inadequate single classifier, choosing
a space of classifiers not containing the optimal classifier, and
falling into local error minima during training [5–7]. However, in
order for an ensemble of classifiers to perform better than an
individual classifier, the ensemble has to be diverse (i.e. the
classifiers have to make independent errors) and the combination
method used has to effectively exploit that diversity [8,9]. One
possible way to achieve diversity of the ensemble is to generate
different training sets for the classifiers through, for examples,
bootstrapping [10], boosting [11] and random subspaces [12].
Another way is to use a heterogeneous ensemble of structurally
diverse classifiers [4,13,14].

For a combination of classifiers, two approaches used are
classifier fusion (CF) and classifier selection (CS). In the CF
approach, a test object is classified using a combination function
ll rights reserved.

.pl (T. Woloszynski),
and all classifiers in the ensemble. The combination functions
used are sum, product, maximum, minimum, majority voting,
fuzzy integral, and others [6,8,9]. However, redundant and inac-
curate classifiers in the ensemble can adversely affect perfor-
mance of a system based on the combination functions. This is
because redundant classifiers reduce diversity of the ensemble
and subsequently they only increase complexity of the system
[13]. Also, performance of the system is unlikely to improve if
inaccurate classifiers are included in the combination process. To
remedy this, ensemble pruning (EP) methods have been devel-
oped [15–18]. The methods are based on selecting and combining
a subset of classifiers from the ensemble instead of combining all.
The selection criteria used are diversity [6,19] and performance
[20] of the selected subset, and a mixture of the two [13,21]. For
small ensembles, the optimal subset can be found through
exhaustive search. For large ensembles, a quasi-optimal subset
is found using heuristic and hill-climbing optimisation algo-
rithms, e.g. genetic algorithms [13,15], reinforcement learning
[22] and quadratic integer programming [23]. However, the
subset selection in the EP methods is independent on the location
of the test object in a feature space. Consequently, there may exist
a different subset that locally performs better than the subset
selected globally.

In the CS approach, the test object is classified by a single
classifier that is statically or dynamically selected from the
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ensemble. In the static classifier selection, first each classifier in
the ensemble is assigned with a region of competence in the
feature space during training. Then, the classifier assigned with
the region of competence that contains the test object is selected
[24,25]. In the dynamic classifier selection (DCS), first a compe-
tence of each classifier is evaluated for the test object and then
the most competent classifier is selected [6,26,27]. For the
calculation of the competence, various performance estimates
are used [26–29]. One drawback of the CS methods is that their
performance depends solely on an accurate estimation. Another
drawback is that the region of competence may be more difficult
to estimate than the optimal decision boundary for some simple
classification problems.

Recently, dynamic ensemble selection (DES) methods that use
a mixture of the CF and CS approaches have been introduced
[30,31]. The methods select and combine a subset of classifiers
from the ensemble for each test object. The selection criteria used
are performance of individual classifiers [30] and subsets of
classifiers [31]. There are also DES methods that do not require
the ensembles of trained classifiers, e.g. mixtures of experts (MoE)
[32]. In the MoE, classifiers are trained and their competences are
calculated in a coupled manner. However, many of the DCS and
DES methods are ad hoc or heuristic. Consequently, it is difficult
to draw sound conclusions about possible improvements for
either a specific method or MCSs in general. For this reason, there
is a growing interest in the theoretical explanation and justifica-
tion of approaches, methods and concepts used for classifier
combination [6,8,33].

In this paper, the classifier competence is studied using a
probabilistic model. The study is the continuation of the previous
work on competence measures for DES based systems [34–36]. In
the previous work, a support given by a classifier for the correct
class was modelled by a random variable and a competence
measure based on the modelling was developed. However, not all
values of the support could be modelled and the measure could
not be used to evaluate worse-than-random classifiers. In this
study, a unified modelling of the full vector of class supports is
derived. Using the modelling, a competence measure is developed
that can be used to evaluate any classifier in the ensemble. Three
DCS and DES based systems were constructed using the measure
developed. Performance of the systems was compared against
two classical combination methods (single best and majority
voting) and six DCS and DES based systems such as DCS-potential
function estimate (DCS-PFE) [26], DCS-local accuracy (DCS-LA)
[27], DCS-modified local accuracy (DCS-MLA) [28], DCS-multiple
classifier behaviour (DCS-MCB) [29], DES-K nearest oracles elim-
inate (DES-KE) [30], and mixtures of experts (MoE) [32]. For the
comparison, 22 benchmark data sets from the UCI Machine
Learning Repository [37], the Ludmila Kuncheva Collection [38]
and the ELENA project [39] were used.

This paper is organised as follows. In Section 2, a probabilistic
model of the classifier competence is developed. Section 3
describes the systems that were constructed using the model.
The experiments conducted are shown in Section 4 and the
results with discussion are presented in Section 5. The paper is
concluded in Section 6.
1 The case where both terms are random events is not considered.
2 Nemo iudex in causa sua, a fundamental principle of natural justice ensuring

fairness of judgement.
2. Theoretical framework

2.1. Classifier ensemble

Let a set of trained classifiers C¼ fc1, . . . ,cLg, called a classifier
ensemble, be given and let a classifier cl, l¼1,y,L be a function
cl : X-M from a feature space XDRn to a set of class labels
M¼ f1, . . . ,Mg. A canonical model of classification is assumed
[6,40], where the classifier cl produces a vector of class supports
½dl1ðxÞ, . . . ,dlMðxÞ� for a feature vector xAX . It is further assumed,
without loss of generality, that

PM
j ¼ 1 dljðxÞ ¼ 1 and dljðxÞZ0.

Classification is made according to the maximum rule

clðxÞ ¼ i 3 dliðxÞ ¼max
jAM

dljðxÞ: ð1Þ

The ensemble C is used for classification through a combination
function which, for example, can select a single classifier or a
subset of classifiers from the ensemble, it can be independent or
dependent on the feature vector x (in the latter case the function
is said to be dynamic), and it can be non-trainable or trainable.
For the dynamic combination functions, the concept of a classifier
competence is frequently used. A competence function cðcl,xÞ
estimates performance of the classifier cl for x and it usually takes
values in the interval [0,1], where the value of 0 (1) indicates the
least (the most) competent classifier. Ideally, the function should
be easy to calculate for arbitrary numbers of classes, features, and
classifiers and it should be independent on the combination
function and the methods used for constructing classifiers in the
ensemble. In this study, a trainable competence function with the
above properties is developed using a probabilistic model. For the
training of the competence function, it is assumed that a valida-
tion set V ¼ fðx1,j1Þ, . . . ,ðxN ,jNÞg containing pairs of feature vectors
and their corresponding class labels is available. For the existing
DCS and DES based systems, the function developed would
replace the module that calculates the classifier competences
using the validation set.

2.2. Measuring the classifier competence

A natural competence measure of the classifier cl for the
feature vector x is the probability of correct classification PcðcljxÞ.
The probability can be written as

PcðcljxÞ ¼
XM
j ¼ 1

Prfx belongs to the j-th class 4 clðxÞ ¼ jg, ð2Þ

where PrfSg is the probability that a statement S is true. However,
the probability is equal to 0 or 1 unless at least one of the two
terms inside the probability operator in (2) is a random event.
This is true in one of the two following cases1:
1.
 A probabilistic model of classification is used, where feature
vectors and class labels are realisations of a random variable
pair (X, J). Using the model, the probability (2) becomes

PcðcljxÞ ¼ Prfx belongs to the j-th classg, where clðxÞ ¼ j: ð3Þ
2.
 The classifier cl assigns the class label j to the feature vector x

in a stochastic manner. In this case, the probability (2)
becomes

PcðcljxÞ ¼ PrfclðxÞ ¼ jg, where j is the class label of x: ð4Þ

There are problems, however, in both cases. First, the probabilistic
model of classification is often used to construct some of the
classifiers in the ensemble (as it is in this study) and therefore, it
should not also be used to construct the competence function.
This is because no one should be a judge in their own cause2,
meaning that the use of the same learning paradigm to construct
a classifier and to evaluate its competence is unfair to the
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Fig. 1. Flowchart of the proposed method for calculating the competence function.
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classifiers constructed using different learning paradigms. Second,
the assumption that the classifier assigns a class label in a
stochastic manner has little or no practical use and hence it
should be avoided. For the above reasons, a direct application of
the probabilistic model to the problem of calculating the classifier
competence is not used in this study. Instead, an indirect method
for solving the problem is developed. The method developed
consists of the following two steps.

In the first step, a hypothetical classifier called a randomised
reference classifier (RRC) is constructed. The classifier produces a
randomised vector of class supports in such a way that its
expected value is equal to the vector of class supports produced
by the classifier cl for each of the feature vectors xk, k¼1,y,N in
the validation set. Consequently, the RRC can be considered as
equivalent to the classifier cl and its probability of correct
classification PcðRRCjxkÞ can be used as the competence Cðcl,xkÞ

of that classifier. This observation is used to construct a compe-
tence set Cl for each classifier cl in the ensemble

Cl ¼ fðx1,Cðcl,x1ÞÞ, . . . ,ðxN ,Cðcl,xNÞÞg: ð5Þ

In the second step, the competence set Cl is used to construct
the competence function cðcl,xÞ. The construction is based on
extending (generalising) the competences Cðcl,xkÞ, k¼1,y,N to
the entire feature space X . Therefore, the construction of the
competence function can be considered as a problem of learning
the function using the competence set. The flowchart of the
proposed method for calculating the competence function is
shown in Fig. 1. The next two subsections describe the steps of
the method in detail.
2.3. Randomised reference classifier (RRC)

The RRC is a stochastic classifier and therefore it is defined
using a probability distribution over the set of class labelsM [41]
or, assuming the canonical model of classification, over the
product of class supports ½0,1�M . In other words, the RRC uses
the maximum rule and the vector of class supports
½d1ðxÞ, . . . ,dMðxÞ� for the classification of the feature vector x, where
the j-th support is a realisation of a random variable (rv) DjðxÞ. The
probability distributions of the rvs are chosen in such a way that
the following conditions are satisfied3:

1: DjðxÞA ½0,1�,

2: E½DjðxÞ� ¼ djðxÞ, j¼ 1, . . . ,M,

3:
XM
j ¼ 1

DjðxÞ ¼ 1, ð6Þ

where E is the expected value operator. Conditions 1 and 3 follow
from the normalisation properties of class supports while condi-
tion 2 relates the RRC to c, ensuring their equivalence. Since, for
each x, the RRC performs classification in a stochastic manner, it is
possible to calculate the conditional probability of correct classi-
fication PcðRRCjxÞ [41]. Assuming that x belongs to the i-th class,
3 Throughout this section, the index l of the classifier cl and the class supports

dljðxÞ is dropped for clarity.
the probability is given by

PcðRRCjxÞ ¼ Pr
^

j ¼ 1,...,M, ja i

DiðxÞ4DjðxÞ

2
4

3
5: ð7Þ

It is important to notice that the probability PcðRRCjxÞ is indepen-
dent on the description of a classification problem at hand and it
can be calculated even if the problem is formulated using a non-
probabilistic model.

From the above definition, it follows that the RRC can be
considered as equivalent to the classifier c for the feature vector x

since it produces, on average, the same vector of class supports as
the modelled classifier. Consequently, it is justified to use the
probability PcðRRCjxÞ as the competence of the classifier c for x,
i.e.

Cðc,xÞ ¼ PcðRRCjxÞ: ð8Þ

For the calculation of the classifier competence, the feature vector
x and its class label j must be known and therefore the compe-
tences can be calculated only for the pairs ðxk,jkÞ, k¼1,y,N taken
from the validation set.

The key element in the modelling presented above is the
choice of the probability distributions for the rvs DjðxkÞ, j¼1,y,M
for each xk so that conditions 1–3 in (6) are satisfied. It needs to be
emphasised that, apart from the extreme case where a vector of
class supports to be modelled has zeros in all positions but one
(e.g. [1,0,y,0]), the choice of the distributions is not unique.
Consequently, the values of the probability PcðRRCjxkÞ and the
classifier competence Cðc,xkÞ depend on the definition of the
distributions. In this study, beta probability distributions with
the parameters ajðxkÞ and bjðxkÞ, j¼1,y,M are used. The choice of
the beta distributions follows from the analysis of the class
supports produced by a random classifier. In particular, it is
shown that if the class supports of the random classifier are
defined using a random division of the unit interval, then the
supports must be beta distributed. This result is then used to
develop a method for modelling class supports produced by any
classifier. The next paragraph justifies the use of the beta
distributions and the method developed in detail.

Let U be a set of M�1 uniformly distributed numbers on the
interval [0,1] and let zm, m¼1,y,M�1 be a sequence of numbers
taken from U arranged in an increasing order. Since the numbers
zm divide the interval [0,1] into M subintervals, the differences
dj ¼ zj�zj�1, j¼1,y,M, where z0¼0 and zM¼1 can be considered
as class supports. From order statistics, it follows that each
support dj is a realisation of the rv Dj with the beta probability
distribution [42]

Dj � bðu,aj,bjÞ ¼
uaj�1ð1�uÞbj�1

R 1
0 uaj�1ð1�uÞbj�1 du

, ð9Þ

where uA ½0,1�, aj ¼ 1 and bj ¼M�1. The expected value of the rv
Dj is

E½Dj� ¼
aj

ajþbj

¼
1

M
: ð10Þ

It can be noticed that the parameters aj and bj sum to M and that
the parameters and the expected values E½Dj� are independent of j.
Consequently, the rvs Dj, j¼1,y,M can only model, in terms of
their expected values, a vector of class supports equal to
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½1=M, . . . ,1=M�. However, the reasoning presented above can be
naturally extended so that any vector of class supports
½d1ðxkÞ, . . . ,dMðxkÞ� produced by the classifier c for xk can be
modelled. For this purpose, the parameters of the beta distribu-
tions are adjusted by solving the following system of equations
for each xk and for each j¼1,y,M

E½DjðxkÞ� ¼
ajðxkÞ

ajðxkÞþbjðxkÞ
¼ djðxkÞ,

ajðxkÞþbjðxkÞ ¼M: ð11Þ

As a result, each class support djðxkÞ is modelled by the rv DjðxkÞ

that is beta distributed with the parameters ajðxkÞ and bjðxkÞ and
for which conditions 1 and 2 in (6) are satisfied.

After the probability distributions are defined, the formula for
the probability PcðRRCjxkÞ can be obtained and subsequently, the
classifier competence Cðc,xkÞ for each feature vector xk can be
calculated. Assuming without loss of generality that xk belongs to
the first class, the competence Cðc,xkÞ is equal to the probability
that a number drawn from the beta distribution with the para-
meters a1ðxkÞ and b1ðxkÞ is greater than M�1 numbers drawn
from the beta distributions with the parameters ajðxkÞ and bjðxkÞ,
j¼2,y,M, respectively. In order to satisfy condition 3 in (6), the M

numbers drawn are normalised to sum to one, if necessary. The
resulting formula for Cðc,xkÞ is therefore given by

Cðc,xkÞ ¼

Z 1

0
bðu,a1ðxkÞ,b1ðxkÞÞ

YM
j ¼ 2

Z u

0
bðw,ajðxkÞ,bjðxkÞÞ dw

2
4

3
5 du

¼

Z 1

0
bðu,a1ðxkÞ,b1ðxkÞÞ

YM
j ¼ 2

Bðu,ajðxkÞ,bjðxkÞÞ

2
4

3
5 du, ð12Þ

where Bðu,ajðxkÞ,bjðxkÞÞ ¼
R u

0 bðw,ajðxkÞ,bjðxkÞÞ dw is a beta cumu-
lative distribution function. Pseudocode with the steps that are
required to calculate the classifier competence is given in Fig. 2.
From computational perspective, it is important to notice that the
beta probability distribution and the beta cumulative distribution
Fig. 2. Pseudocode of the probabilistic m
functions are efficiently implemented in most software packages
for technical computing. Using these functions, a MATLAB code
ccprmod.m for calculating the proposed classifier competence
was developed and it is freely available for download [43].
2.4. Generalising the competences

The construction of the competence function essentially
depends on the interpretation of the information encapsulated
in the competence set. In this study, two interpretations based on
two different learning paradigms (i.e. a potential function model
and regression) are used, each one of them having its own
advantages and disadvantages allowing for specific practical
recommendations.
2.4.1. Potential function model

In this interpretation, the feature vectors xk are considered to
be the locations of the competence sources Cðcl,xkÞ that influence
the entire feature space X , creating a competence field. The
competence at x is a result of the cumulative influence of the
sources, where the influence of each source is proportional to
Cðcl,xkÞ and it decreases as the distance between x and xk

increases. This interpretation allows for using the potential
function model [44] to construct the competence function as
follows:

cðcl,xÞ ¼
XN

k ¼ 1

Cðcl,xkÞKðx,xkÞ, ð13Þ

where Kðx,xkÞ is a non-negative potential function decreasing
with the increasing distance between x and xk. In this study, a
Gaussian potential function with the Euclidean distance
Kðx,xkÞ ¼ expð�distðx,xkÞ

2
Þ is used. The function was substituted

into (13) which was then normalised in order for the competence
function to take values in the interval [0,1]. This resulted in the
odel of the classifier competence.
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following formula:

cðcl,xÞ ¼

PN
k ¼ 1 Cðcl,xkÞexpð�distðx,xkÞ

2
ÞPN

k ¼ 1 expð�distðx,xkÞ
2
Þ

: ð14Þ

The potential function model is easy to implement and resistant
to overtraining. However, it requires the competence set to be
stored and this adversely affects its use in large-scale classifica-
tion problems.

2.4.2. Regression

In this interpretation, the following relation between the
competences calculated for the validation set and the competence
function is assumed

Cðcl,xÞ ¼ cðcl,xÞþeðxÞ, ð15Þ

where eðxÞ is a random disturbance term with zero expected value
E½eðxÞ� ¼ 0 for all xAX and a finite variance supxAXvarðeðxÞÞo1.
This allows for defining the competence function as a regression
function

cðcl,xÞ ¼ E½Cðcl,xÞjx� ð16Þ

and subsequently, for constructing cðcl,xÞ through an estimation
of the regression function using the competence set Cl. Assuming
that the competence function depends on a finite set of para-
meters p¼ ½pð1Þ, . . . ,pðsÞ�T , pARs (T denotes transpose)

cðcl,xÞ ¼ cðcl,x,pÞ, ð17Þ

the construction of the function is a parametric estimation problem
which can be solved using the least squares method. The solution is
an estimated competence function ĉðcl,x,pÞ ¼ cðcl,x,p̂Þ, where the
parameters p̂ are found by minimising the following criterion:

Q ðpÞ ¼
XN

k ¼ 1

½Cðcl,xkÞ�cðcl,xk,pÞ�2: ð18Þ

The estimated competence function is truncated if it returns values
outside the interval ½0,1�. For the competence function of the form

cðcl,x,pÞ ¼ pðclÞ
TjðxÞ, ð19Þ

where jðxÞ ¼ ½jð1ÞðxÞ, . . . ,jðsÞðxÞ�T is a vector of known transforma-
tions of x, the optimal parameter is equal to

p̂ðclÞ ¼ ðF
TFÞ�1FT CðclÞ: ð20Þ

The design matrix F¼ ½jðx1Þ, . . . ,jðxNÞ�
T consists of the vectors jðxÞ

calculated for the feature vectors xk, k¼1,y,N in the validation set
and the vector CðclÞ ¼ ½Cðcl,x1Þ, . . . ,Cðcl,xNÞ� consists of the
0 0.1 0.2 0.3 0.4 0.
0

0.5

1

1.5
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2.5
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3.5

Fig. 3. The beta probability distributions of the class supports from example 1
competences in the set Cl. In this study, the above form of the
competence function and three different transformation vectors jðxÞ
are used. For the three vectors, each feature in x is transformed into
polynomials

Pr
i ¼ 0 xi of orders r¼2,3 and 5, respectively. The second

order interaction terms between every pair of the features in x are
also included in the vectors. The number of the parameters to
estimate is therefore equal to s¼ 1þr�nþnðn�1Þ=2 (constant term
þ polynomial terms þ interaction terms).

The competence function constructed using regression does
not require the competence set to be stored and it is generally
faster than the one constructed using the potential function
model. However, if s4N then the matrix FTF is singular and a
pseudoinverse must be used to obtain the optimal parameters
p̂ðclÞ [45]. Therefore, as the value of s increases, risk of overfitting
also increases.

2.5. Examples

1. Consider a classification problem with three classes (M¼3)
where the competence Cðc,xkÞ of the classifier c for the feature
vector xk is to be found. The class label of xk is jk¼2 and the vector of
class supports produced by the classifier for xk is equal to [0.3,0.6,0.1].
First, the parameters ajðxkÞ and bjðxkÞ, j¼1,2,3 are calculated using
(11). The resulting values are ða1ðxkÞ,b1ðxkÞÞ ¼ ð0:9,2:1Þ, ða2ðxkÞ,
b2ðxkÞÞ ¼ ð1:8,1:2Þ and ða3ðxkÞ,b3ðxkÞÞ ¼ ð0:3,2:7Þ. The beta probabil-
ity distributions with the parameters calculated are plotted in Fig. 3.
Then, using (12) the competence Cðc,xkÞ is obtained as

Cðc,xkÞ ¼

Z 1

0
bðu,1:8,1:2ÞBðu,0:9,2:1ÞBðu,0:3,2:7Þ du� 0:786:

Therefore, the competence of the classifier c for the feature vector xk

is equal to 0.786.
2. This example shows the relation between the competence

and a support given by the classifier c for the correct class. Let the
classifier produce the vector of class supports ½d1ðxkÞ,d, . . . ,d�,
where d¼ ð1�d1ðxkÞÞ=ðM�1Þ and let xk belong to the first class
(jk¼1). The competence Cðc,xkÞ plotted against d1ðxkÞA ½0,1� for
different values of M is shown in Fig. 4. It can be noticed from the
figure that the competence is equal to the probability of random
classification Cðc,xkÞ ¼ 1=M if a vector of class supports is equal to
½1=M, . . . ,1=M�.

3. Consider a classification problem with two classes
(M¼2) where feature vectors are drawn from two normal
distributions with different mean vectors and covariance matrices
for each class. Trained linear classifier and the validation set are
5 0.6 0.7 0.8 0.9 1

class 1
class 2
class 3

. The expected values of the distributions are equal to the class supports.
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Fig. 5. (a) The validation set, the optimal decision boundary (dashed line) and the boundary obtained from the linear classifier (solid line) for the classification problem

with two classes (þ and 3) from example 3, and (b,c) two competence maps calculated for the linear classifier using the potential function model and regression,

respectively; the subregions where the competences are lower than the probability of random classification (o0:5) are shaded.
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given, and the goal is to calculate two competence maps for a
square region in the feature space by generalising the compe-
tences calculated for the validation set to the entire feature space.
For the generalisation, the potential function model with the
normalised Gaussian potential function and regression with r¼5
are used. The validation set, the optimal decision boundary and
the decision boundary obtained from the linear classifier are
shown in Fig. 5(a). Using (13), the competence maps were
calculated and they are depicted in Figs. 5(b) and (c). The
subregions where the competences are lower than the probability
of random classification (o0:5) are shaded.
3. Methods

Three DCS and DES based classification systems were
constructed using the probabilistic model of the classifier com-
petence. For each of the systems, four methods of generalising the
competences were evaluated, i.e. the potential function model
with the normalised Gaussian potential function and regression
with r¼2,3 and 5.
1.
 DCS-most competent (DCS-MC): This system classifies the
feature vector x in the following manner. First, the compe-
tence set Cl and the competence function cðcl,xÞ are
constructed for each classifier in the ensemble. Then, the
DCS-MC system cMC selects the most competent classifier
from the ensemble and uses it for the classification of x

cMCðx,V ,CÞ ¼ i 3 dkiðxÞ ¼max
jAM

dkjðxÞ4cðck,xÞ ¼ max
l ¼ 1,...,L

cðcl,xÞ: ð21Þ
2.
 DES-competence based on label outputs and weighted major-
ity voting (DES-CV):This system is the same as the DCS-MC
system, except that a subset C�x of the classifiers with the
competences greater than the probability of random classifi-
cation is selected from the ensemble for each x

C�x ¼ fcl1
, . . . ,clT

g where cðclt
,xÞ4

1

M
, t¼ 1, . . . ,T : ð22Þ



Fig. 6. Pseudocode of the DCS-MC system.

Fig. 7. Pseudocode of the DES-CV system.
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This step eliminates inaccurate classifiers and keeps the
ensemble relatively diverse [34,35]. The selected classifiers
are combined using the weighted majority voting rule [46]
where the weights are equal to the competences. This results
in the following vector of class supports:

dCV
j ðxÞ ¼

XT

t ¼ 1

cðclt
,xÞ1 dlt jðxÞ ¼max

kAM
dlt kðxÞ

� �
, ð23Þ

where 1½S� is the indicator function equal to 1 (0) if a
statement S is true (false). The DES-CV system cCV classifies
x using the maximum rule

cCV ðx,V ,CÞ ¼ i 3 dCV
i ðxÞ ¼max

jAM
dCV

j ðxÞ: ð24Þ
In the case where the subset C�x is empty (i.e. there are no
classifiers selected), x is assigned with a random class label.
3.
 DES-competence based on continuous-valued outputs and
weighted class supports (DES-CS):This system is the same as
the DES-CV system, except that a weighted vector of class
supports is used instead of the weighted majority voting rule.
The weighted vector of class supports is given by

dCS
j ðxÞ ¼

XT

t ¼ 1

cðclt ,xÞdlt jðxÞ: ð25Þ

Again, the maximum rule is used for the classification of x

cCSðx,V ,CÞ ¼ i 3 dCS
i ðxÞ ¼max

jAM
dCS

j ðxÞ ð26Þ



Fig. 8. Pseudocode of the DES-CS system.

Table 1
The data sets used in the experiments.

Data set Source #Objects #Features #Classes

Blood transfusion [49] UCI 748 4 2

Breast cancer Wisconsin [50] UCI 699 9 2

Clouds UCI 5000 2 2

Dermatology UCI 366 34 6

EColi [51] UCI 336 7 8

Glass UCI 214 9 6

Haberman’s survival UCI 306 3 2

Ionosphere UCI 351 34 2

Iris UCI 150 4 3

Laryngeal3 LKC 353 16 3

OptDigits UCI 3823 64 10

Page blocks UCI 5473 10 5

Parkinson [52] UCI 195 22 2

Phoneme ELENA 5404 5 2

Pima Indians UCI 768 8 2

Segmentation UCI 2310 19 7

Sonar UCI 208 60 2

Spam UCI 4601 57 2

Thyroid LKC 215 5 3

Vowel UCI 990 10 11

Wine UCI 178 13 3

Yeast UCI 1484 8 10
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and a random class labels is assigned to x in the case where
the subset C�x is empty.

Pseudocodes of the DCS-MC, DES-CV and DES-CS systems are
shown in Figs. 6, 7 and 8, respectively.

4. Experiments

Performance of the systems was evaluated in two experiments
using 22 benchmark data sets. In the first experiment, the three
systems constructed were evaluated using different competence
generalisation methods. The system and method that showed the
best combined performance were identified. In the second experi-
ment, the system and the method identified were compared
against other competence based MCSs. The experiments were
conducted in MATLAB using PRTools 4.1 [47].

4.1. Data sets

The 22 benchmark data sets were taken from the UCI Machine
Learning Repository [37], the Ludmila Kuncheva Collection (LKC) [38]
and the ELENA project [39]. A brief description of the data sets used is
given in Table 1. For each data set, feature vectors were normalised to
zero mean and unit standard deviation. Two-fold cross-validation was
used to extract training and testing sets from each data set. For the
calculation of the competences, a two-fold stacked generalisation
method was used [48]. In the method, the training set is split into two
sets A and B of roughly equal sizes. The set A is first used for the
training of the classifiers in the ensemble while the set B is used for
the calculation of the competences. Then, the set B is used for the
training while the competences are calculated using the set A. Finally,
the competences calculated for both sets are stacked together and the
classifiers in the ensemble are trained using the union of the sets A

and B (i.e. the original training set). In this way, the competences of
the classifiers are calculated for all the feature vectors in the original
training set, but the data used for the calculation is unseen during the
classifier training.

4.2. MCSs used for comparison

The performance of the systems constructed was compared
against the following eight MCSs:
1.
 The single best (SB) classifier in the ensemble.

2.
 Majority voting (MV) of all classifiers in the ensemble.
3.
 DCS-potential function estimate (DCS-PFE): This system
classifies the feature vector x in the following manner. First,
the competence Cðcl,xkÞ is assigned with the value of 1 (�1) if
the classifier cl correctly (incorrectly) classifies xk taken from
the validation set. Then, the competence function cðcl,xÞ is
constructed using the following potential function model:

cðcl,xÞ ¼
XN

k ¼ 1

Cðcl,xkÞ

1þdistðx,xkÞ
2
:

Finally, the most competent classifier is selected from the
ensemble and it is used for the classification of x [26].
4.
 DCS-local accuracy (DCS-LA): This system is the same as the
DCS-PFE system, except the competence Cðcl,xÞ is defined as a
local classification accuracy. The accuracy is estimated using k

nearest neighbours of x taken from the validation set. The
value of k¼10 was used for which the system achieved the
best overall performance in the previous studies [27].
5.
 DCS-modified local accuracy (DCS-MLA): This system is the
same as the DCS-LA system, except the accuracy is estimated
using weighted k¼10 nearest neighbours of x [28].
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DCS-multiple classifier behaviour (DCS-MCB): This system is
the same as the DCS-PFE system, except the competence
Cðcl,xÞ is defined as the classification accuracy calculated for
a set ~V . The set ~V is generated from the validation set as
follows. First, a multiple classifier behaviour (MCB) is calcu-
lated for x and for its k-nearest neighbours taken the validation
set. The MCB is defined as a vector whose elements are class
labels assigned by all classifiers in the ensemble. Next, simila-
rities between the MCBs are calculated using the averaged
Hamming distance. Finally, the objects in the validation set
with the feature vectors xk that are most similar to x (i.e. below
some similarity threshold t) are used to generate the set ~V .
Since the optimal values of k and t were not given in [29], they
were arbitrarily set to k¼10 and t¼ 0:5.
7.
 DES-KNORA eliminate (DES-KE): This system classifies x using
the majority voting rule and a subset of classifiers selected
from the ensemble. The selected subset consists of the classi-
fiers that correctly classify k nearest neighbours of x taken
from the validation set. If there are no classifiers selected, the
value of k is decreased. The value of k¼8 was used for which
the DES-KE system achieved the best performance [30].
8.
 MoE—mixtures of experts: This system trains classifiers and
calculates their competences in a coupled manner using the
expectation maximisation algorithm [53]. The system is organised
in a tree-like structure with the classifiers located at
the terminal nodes and gating networks located at the
non-terminal nodes. The gating networks are used to partition
the feature space into regions of competence in order for a
classification problem at hand to be simplified. The feature vector
x is classified using a weighted response of the classifiers where
the weights are obtained from the gating networks. The para-
meters of the system were set as suggested in [53,54].

4.3. Classifier ensembles

The experiments were conducted using two ensemble types:
homogeneous and heterogeneous. The homogeneous ensemble
le 2
ssification accuracies (in per cent) and average ranks of the systems constructed for d

and CS denote the DCS-MC, DES-CV and DES-CS systems, respectively. The best res

ata set Gaussian potential Regression r¼2

MC CV CS MC CV CS

lood 76.23 76.34 76.38 76.69 76.89 76.

reast 94.19 95.67 95.67 93.98 95.66 95.

louds 63.92 62.61 63.58 69.42 68.10 69.

ermat 57.59 80.69 82.31 54.95 79.14 81.

Coli 68.31 79.89 79.98 67.40 79.52 79.

lass 54.81 66.24 66.58 53.37 65.06 65.

aber 73.32 73.48 73.42 72.39 72.74 72.

no 84.63 86.31 87.05 83.98 85.74 86.

is 90.96 93.00 93.04 90.64 93.07 93.

ryng 64.40 71.95 72.24 63.35 70.94 71.

ptDig 51.75 84.35 86.63 51.09 84.33 86.
age 95.03 96.18 96.00 95.03 96.11 95.

arkin 83.76 87.85 87.86 81.21 86.36 86.

honeme 75.76 75.78 75.77 72.97 72.98 72.

ima 65.60 65.56 66.05 65.47 65.44 65.

egment 83.37 95.91 95.64 82.95 95.75 95.

onar 68.24 76.68 76.70 67.39 75.26 75.

pam 82.58 86.02 88.89 81.63 85.79 88.

hyroid 88.78 92.67 92.36 88.39 92.54 92.

owel 53.36 78.58 79.28 51.41 78.69 78.

ine 83.13 94.85 95.19 81.28 94.20 94.

east 40.18 53.45 54.25 40.13 53.43 54.

vg. rank 8.59 3.95 3.05 10.32 6.23 4.
consisted of 50 pruned decision tree classifiers with Gini splitting
criterion. The heterogeneous ensemble consisted of the following
10 classifiers [40]: (1, 2) linear (quadratic) classifier based on
normal distributions with the same (different) covariance matrix
for each class, (3) nearest mean classifier, (4–6) k-nearest neigh-
bours classifiers with k¼1,5,15, (7, 8) Parzen density based
classifier with the Gaussian kernel and the optimal smoothing
parameter hopt (and the smoothing parameter hopt/2), (9) pruned
decision tree classifier with Gini splitting criterion, (10) support
vector machine classifier with radial basis kernel function. For
both ensemble types, classifiers were trained using bootstrapping
of the training set.
5. Results and discussion

Classification accuracies were averaged over 30 repetitions of
two-fold cross-validation. Statistical differences in rank between
the systems were obtained using a Friedman test with Iman and
Davenport correction combined with a post hoc Holm’s step-
down procedure [55]. The average ranks of the systems and a
critical rank difference calculated using a Bonferroni–Dunn test
[55] were visualised. Since the two tests used may produce
different results, conclusions were drawn using the Friedman test
which is more powerful. The level of po0:05 was considered as
statistically significant.

5.1. Competence generalisation methods and combination functions

The results obtained from the first experiment for the three
systems constructed and the homogeneous and heterogeneous
ensembles are presented in Tables 2 and 3, respectively. The
average ranks of the systems constructed and the critical rank
difference (2.961) are shown in Figs. 9 and 10. For each system,
the use of the potential function model resulted in the best
average rank regardless of the ensemble type used. One possible
reason for this is that the potential function model is not
parameterised and hence it can approximate a more general class
ifferent competence generalisation methods and the homogeneous ensemble. MC,

ult for each data set is in bold.

Regression r¼3 Regression r¼5

MC CV CS MC CV CS

86 76.80 77.08 77.10 76.55 76.73 76.79

67 94.05 95.63 95.67 94.11 95.60 95.69
03 70.39 69.08 70.03 69.25 67.93 68.87

07 54.87 79.20 81.12 56.02 79.33 81.25

48 67.50 79.41 79.69 67.18 79.41 79.56

50 53.73 65.07 65.68 51.51 64.85 65.60

71 72.87 73.18 73.04 73.11 73.29 73.26

40 84.33 86.24 86.81 84.26 85.91 86.60

29 91.42 93.20 93.31 91.29 93.29 93.36
54 62.98 70.88 71.29 63.32 70.73 71.11

69 51.15 84.17 86.57 50.99 83.90 86.40

94 94.96 96.13 95.94 94.97 96.10 95.93

23 80.87 86.45 86.48 81.76 86.62 86.63

98 74.03 74.04 74.05 75.37 75.38 75.42

92 65.39 65.45 66.02 65.39 65.51 65.98

58 82.82 95.72 95.55 82.75 95.71 95.54

20 67.53 75.31 75.24 67.33 75.76 75.85

61 81.60 85.75 88.54 81.44 85.73 88.61

51 88.36 92.44 92.47 87.66 92.22 92.06

96 51.64 78.47 78.88 51.55 78.51 78.75

21 81.19 93.84 93.99 82.37 94.31 94.33

22 39.81 53.36 54.15 40.01 53.17 54.06

93 10.02 6.09 4.09 10.30 6.25 4.18



Table 3
Classification accuracies (in per cent) and average ranks of the systems constructed for different competence generalisation methods and the heterogeneous ensemble. MC,

CV and CS denote the DCS-MC, DES-CV and DES-CS systems, respectively. The best result for each data set is in bold.

Data set Gaussian potential Regression r¼2 Regression r¼3 Regression r¼5

MC CV CS MC CV CS MC CV CS MC CV CS

Blood 77.04 77.54 77.73 77.01 78.17 78.16 76.88 78.16 78.05 76.66 77.97 77.93

Breast 95.93 96.16 96.18 95.07 96.20 96.30 94.97 96.15 96.28 94.66 96.05 96.20

Clouds 80.34 79.71 78.88 80.03 79.69 78.94 79.99 79.65 78.80 80.06 79.80 79.00

Dermat 94.78 95.66 95.75 90.81 95.15 95.43 90.92 95.14 95.34 90.83 95.03 95.34

EColi 84.06 85.74 85.40 83.01 85.48 85.23 82.59 85.42 85.20 82.28 85.24 84.99

Glass 64.40 66.49 66.78 61.87 64.56 65.68 62.09 64.64 65.56 60.02 64.21 64.67

Haber 73.10 74.25 74.17 72.92 73.90 73.88 73.03 73.97 73.76 72.64 73.87 73.67

Iono 82.59 85.01 86.36 76.29 81.91 84.34 77.36 82.84 84.99 77.96 82.84 85.27

Iris 95.80 95.62 95.69 95.42 95.71 95.69 95.44 95.67 95.76 94.62 95.58 95.76

Laryng 70.27 73.32 73.21 65.27 70.11 70.62 65.74 69.29 69.42 66.21 70.43 70.34

OptDig 96.20 97.14 97.22 89.88 95.61 96.23 89.38 95.53 96.19 88.29 95.15 95.93

Page 96.05 95.94 96.10 95.78 95.89 96.11 95.82 95.88 96.10 95.81 95.90 96.10

Parkin 87.76 90.31 90.36 79.98 84.87 86.17 80.42 85.29 85.44 81.71 85.46 85.94

Phoneme 86.44 86.69 87.35 86.10 86.65 87.32 85.98 86.72 87.36 86.02 86.86 87.40
Pima 67.66 68.36 68.37 67.77 69.03 68.90 67.72 68.85 68.81 67.52 68.73 68.58

Segment 94.51 94.70 95.06 92.44 94.31 94.76 92.37 94.34 94.81 92.25 94.29 94.77

Sonar 74.81 79.52 79.64 67.84 73.03 73.63 66.68 71.95 73.52 67.44 72.46 74.36

Spam 90.28 91.70 91.83 87.89 90.41 91.09 87.89 90.42 91.03 87.41 90.10 90.73

Thyroid 92.81 92.44 92.93 91.90 92.51 93.06 91.58 92.50 93.01 91.09 92.06 93.01

Vowel 86.38 88.72 90.32 85.27 88.76 90.55 83.81 87.91 90.02 84.53 88.23 90.23

Wine 95.21 96.03 96.35 78.20 88.56 92.72 82.55 90.46 92.62 79.23 88.21 92.40

Yeast 56.98 58.32 56.82 56.52 58.30 56.75 56.29 58.21 56.79 56.37 58.27 56.82

Avg. rank 6.36 4.05 3.27 10.36 5.77 3.82 10.50 6.45 5.00 10.95 6.86 4.59

2 3 4 5 6 7 8 9 10 11

MC (pot.)CV (pot.)CS (pot.)

MC (r=2)

CV (r=2)

CS (r=2) MC (r=3)CV (r=3)

CS (r=3) MC (r=5)

CV (r=5)CS (r=5)

Average rank

Fig. 9. Average ranks of the systems constructed for different competence generalisation methods and the homogeneous ensemble. MC, CV and CS denote the DCS-MC,

DES-CV and DES-CS systems, respectively. The interval (thick line) is the critical rank difference (2.961) calculated using the Bonferroni–Dunn test (po0:05).

2 3 4 5 6 7 8 9 10 11
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CV (pot.)

CS (pot.) MC (r=2)CV (r=2)
CS (r=2) MC (r=3)

CV (r=3)

CS (r=3)

MC (r=5)
CV (r=5)CS (r=5)

Average rank

Fig. 10. Average ranks of the systems constructed for different competence generalisation methods and the heterogeneous ensemble. MC, CV and CS denote the DCS-MC,

DES-CV and DES-CS systems, respectively. The interval (thick line) is the critical rank difference (2.961) calculated using the Bonferroni–Dunn test (po0:05).
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of functions when compared against the regression based
method. Another reason could be that the model does not depend
on the dimensionality of the data set and this could be to its
advantage for classification problems with small sample sizes. For
example, the use of the model resulted in higher classification
accuracies than the use of the regression based method for the
high-dimensional and small-sample-size data sets (i.e. the Der-
matology, EColi, Glass, Ionosphere, Laryngeal3, Parkinson, Sonar
and Wine data sets). For the regression based method,
the choice of the parameter r had a relatively little effect on the
results obtained, except for the heterogeneous ensemble and
the DES-CV and DES-CS systems where an improvement of about
one rank was obtained for the parameter r¼2 when compared
against r¼3 and 5.

The DES-CS, DES-CV and DCS-MC systems achieved the best,
the second best and the worst average ranks regardless of the
competence generalisation method and the ensemble type used.
This indicates that DES is superior to DCS and that neither of the
competence generalisation methods used affects relative ranks of
the systems constructed. Also, the combination function based on
the weighted class supports used in the DES-CS system appears to
be more accurate than the one based on the weighted majority
voting rule used in the DES-CV system. This could be attributed to
the fact that the former uses the supports for all classes, while the
latter uses a single class label. Consequently, in the case where a
classifier produces high supports for at least two classes, the
information about ‘‘uncertainty’’ of the classifier is not used in the
weighted majority voting rule.

From the results obtained, it can be concluded that the
potential function model is the most accurate method for general-
ising the competences and it should be used for classification
problems with small and medium sample sizes. For problems
with large sample sizes, where the computational cost of the
potential function model could play a role, the regression based
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method with r¼2 appears to be the most suitable one. Also, the
weighted class supports and DES methodology seem to be the
best choice when constructing the combination function. For
these reasons, the DES-CS system based on the potential function
model for generalising the competences was selected for the
second experiment.

5.2. Homogeneous ensemble

The results obtained from the second experiment for the DES-
CS system, the eight MCSs and the homogeneous ensemble are
presented in Table 4. The system constructed had statistically
significantly higher average rank than all but the MV and MoE
systems. The average ranks of the systems and the critical rank
difference (2.249) are shown in Fig. 11.

The SB system had the lowest average rank among all the
systems evaluated, indicating that the decision tree classifiers
used were unstable and diverse. This in turn could explain the
better performance of the DES-CS system because the compe-
tence of an unstable classifier would be estimated more con-
servatively using the probabilistic model of the classifier
competence when compared against the other methods. The
reason is that if the support given by a classifier for an incorrect
class increases, then the competence of that classifier decreases,
regardless of whether the class label obtained using the max-
imum rule has changed. Another reason could be that the
probabilistic model uses the expected value operator to ensure
equivalence between the RRC and the modelled classifier. In other
words, the competence is calculated using the RRC that, only on
average, behaves like the modelled unstable classifier. This is
Table 4
Classification accuracies (in per cent) and average ranks of the DES-CS system and th

in bold.

Data set SB MV DCS-PFE DCS-LA

Blood 76.22 76.20 76.10 76.28

Breast 94.27 95.77 93.66 93.76

Clouds 62.96 62.57 64.10 64.24

Dermat 58.92 84.06 57.89 58.50

EColi 67.56 80.06 67.99 67.00

Glass 50.50 65.17 52.44 52.36

Haber 73.45 73.53 72.63 72.66

Iono 84.13 86.18 84.62 84.53

Iris 91.70 94.10 91.07 91.10

Laryng 63.24 72.22 64.87 63.70

OptDig 51.97 88.70 51.69 52.01

Page 95.09 96.09 94.92 94.92

Parkin 82.05 87.36 82.72 82.65

Phoneme 70.73 70.67 70.78 70.76

Pima 65.62 65.20 65.55 65.68

Segment 82.98 96.06 83.60 83.41

Sonar 67.81 77.72 68.60 67.58

Spam 81.72 86.18 82.65 81.82

Thyroid 87.53 92.79 87.98 88.19

Vowel 49.72 79.51 50.61 50.76

Wine 84.02 95.68 83.65 82.15

Yeast 39.52 54.45 39.98 39.72

Avg. rank 7.14 3.27 6.48 6.68

1 2 3 4

MV D
DES–KE

MoEDES–CS

Average 

Fig. 11. Average ranks of the DES-CS system and the eight MCSs for the homogeneous

Bonferroni–Dunn test (po0:05).
likely to be a more robust approach than the one used in the other
competence functions based only on the class labels returned by
classifiers in the ensemble. In these functions, the information
about ‘‘uncertainty’’ of a classifier encapsulated in its vector of
class supports is not used.

The better performance of the DES-CS system could also be
explained by the fact that the worse-than-random classifiers are
eliminated from the ensemble before classifier combination takes
place. Since inaccurate classifiers adversely affect performance of
MCSs regardless of their diversity [13], thresholding the compe-
tences with the probability of random classification is a simple
and effective way to select a relatively accurate and diverse
subset of classifiers from the ensemble. For example, an average
of 1.27% of the test feature vectors were assigned with a random
class label for each data set in the experiments conducted.
Therefore, all classifiers in the ensemble were evaluated as
worse-than-random for these feature vectors and, assuming that
the evaluation was correct, the DES-CS system outperformed all
eight MCSs.

5.3. Heterogeneous ensemble

The results obtained from the second experiment for the DES-
CS system, the eight MCSs and the heterogeneous ensemble are
presented in Table 5. The system constructed had statistically
significantly higher average rank than all other systems. The
average ranks of the systems and the critical rank difference
(2.249) are shown in Fig. 12.

The SB system had the best average rank among all eight
MCSs. Although this indicates that classifiers in the ensemble
e eight MCSs for the homogeneous ensemble. The best result for each data set is

DCS-MLA DCS-MCB DES-KE MoE DES-CS

76.28 76.32 76.28 78.40 76.44

93.83 93.96 95.29 95.41 95.88
64.23 64.22 64.00 74.42 63.64

77.20 58.06 62.61 94.21 83.91

71.51 66.92 71.43 83.06 81.01

55.52 52.75 57.86 65.12 67.22
72.71 72.76 73.47 72.33 73.48

84.86 84.43 85.47 83.62 87.62
91.07 91.13 93.07 95.13 94.37

63.87 63.46 67.93 67.70 72.69
82.10 52.18 56.21 86.74 87.35

95.15 94.99 95.80 89.88 96.00

82.51 82.72 85.39 80.97 88.31
70.76 70.76 70.73 80.70 75.95

65.61 65.31 65.49 68.73 66.30

86.98 83.52 91.32 83.98 95.72

67.84 67.92 70.91 58.26 78.13
82.25 81.76 85.29 61.37 88.85
88.30 88.19 91.19 92.88 93.21
74.53 52.36 55.86 82.10 79.45

83.17 81.78 89.52 96.43 95.84

50.05 39.89 42.28 55.85 55.36

5.16 6.27 4.23 3.82 1.95

5 6 7 8

SB
DCS–PFE

DCS–LA

CS–MLA DCS–MCB

rank

ensemble. Thick interval is the critical rank difference (2.249) calculated using the



Table 5
Classification accuracies (in per cent) and average ranks of the DES-CS system and the eight MCSs for the heterogeneous ensemble. The best result for each data set is

in bold.

Data set SB MV DCS-PFE DCS-LA DCS-MLA DCS-MCB DES-KE MoE DES-CS

Blood 77.27 77.85 77.59 76.78 76.81 75.70 76.07 78.91 78.26

Breast 96.31 96.29 96.01 96.14 96.14 95.76 95.25 95.44 96.28

Clouds 80.44 75.38 80.41 77.56 77.57 77.03 75.06 74.50 79.07

Dermat 95.60 96.17 95.05 95.20 95.30 95.10 95.25 93.96 96.27
EColi 84.78 85.72 84.63 84.09 84.37 83.19 82.43 82.97 86.24
Glass 66.39 64.96 64.72 64.03 62.72 64.68 64.20 65.19 67.35
Haber 74.29 74.00 73.41 72.66 72.73 71.52 71.54 72.76 74.59
Iono 84.56 84.27 85.57 84.19 83.15 83.79 83.62 83.62 86.95
Iris 96.43 95.63 95.23 95.90 95.90 95.67 94.73 94.43 95.87

Laryng 71.96 73.88 72.04 67.95 68.81 67.61 70.12 67.59 73.90
OptDig 96.35 97.14 96.38 96.02 96.03 95.98 96.76 86.74 97.43
Page 95.86 95.83 96.10 96.12 96.16 96.27 96.12 89.89 96.24

Parkin 89.20 89.69 88.46 88.18 87.57 88.49 88.83 81.23 91.26
Phoneme 86.37 85.06 86.35 85.67 85.65 86.41 86.89 80.70 87.63
Pima 69.19 68.53 67.90 67.53 67.68 67.49 67.61 68.73 68.91

Segment 93.66 94.78 93.98 94.09 94.28 94.37 94.47 84.06 95.32
Sonar 79.20 79.40 78.16 72.67 72.60 72.84 74.98 58.33 80.44
Spam 89.30 91.07 90.31 90.56 90.72 90.20 89.73 61.38 91.91
Thyroid 93.95 92.11 93.81 92.86 93.18 93.18 93.32 93.02 93.62

Vowel 86.99 87.14 88.05 84.03 82.84 84.49 84.55 82.17 90.18
Wine 96.60 96.69 95.09 95.62 95.87 95.56 95.56 96.82 97.17
Yeast 57.76 57.64 57.93 55.63 56.05 53.57 53.12 55.85 57.79

Avg. rank 3.45 3.82 4.59 6.11 5.70 6.32 6.23 7.18 1.59

1 2 3 4 5 6 7 8

SB MV DCS–PFE
DCS–LA

DCS–MLA

DCS–MCB
DES–KE

MoEDES–CS

Average rank

Fig. 12. Average ranks of the DES-CS system and the eight MCSs for the heterogeneous ensemble. Thick interval is the critical rank difference (2.249) calculated using the

Bonferroni–Dunn test (po0:05).
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were highly accurate, the ensemble was not dominated by any
particular classifier type. For example, each type of classifier used,
except the Parzen with the smoothing parameter hopt/2 and the
decision tree, outperformed all other classifiers in the ensemble
for at least one data set. Therefore, the heterogeneous ensemble
was likely to be diverse regardless of the fact that some of the
classifiers were highly accurate. This observation has support in
the previous study where it was shown that the CF and CS based
systems perform better for heterogeneous ensembles [14]. The
results obtained for the MV system, which had the second best
average rank, show that the optimal subset consisted of all or
nearly all classifiers in the ensemble. This could also be the reason
for the better performance of the DES-CS system since it selected,
on average, 8.5 out of 10 classifiers from the ensemble for each
test feature vector. This in turn indicates that the probabilistic
model developed can correctly evaluate the competences of
highly accurate classifiers, i.e. the classifiers that produce the
vectors of class supports dominated by the support given for the
correct class.

For some of the data sets used, the differences in classification
accuracy between the DES-CS system and the eight MCSs were
relatively small. Nonetheless, even small differences obtained in
favour of the system constructed for a number of data sets
increase statistical significance of its average rank. This could be
of practical importance in, for examples, industrial and medical
applications where the costs of misclassification are high and
therefore even a small improvement in performance is beneficial.

Based on the results obtained, it is suggested that the full
vector of class supports should be used for evaluating the
classifier competence. Since the classification errors are calcu-
lated using vectors of class supports, this suggestion may also be
valid for evaluating the ensemble diversity.

6. Conclusion

In this study, a probabilistic model of the classifier competence
was developed. The competence is calculated as the probability of
correct classification of the randomised reference classifier that,
on average, produces the same vector of class supports as the
modelled classifier. Three DCS and DES based systems were
constructed using the probabilistic model developed. The DES
based system with the potential function model for generalising
the competences outperformed eight MCSs for 22 benchmark
data sets regardless of the ensemble type used (homogeneous or
heterogeneous). Consequently, the model developed appears to
be suitable for a wide range of classification problems.

To the best of the authors’ knowledge, the proposed method of
calculating the classifier competence is the first method that uses
the full vector of class supports. Based on the findings of the
present study, it is suggested that the development of such
methods should be a focus of the future research as they
potentially improve performance of multiple classifier systems.
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